Determination of appropriate leaf positions to establish the diagnosis and recommendation integrated systems for plant pineapple (Ananas comosus L.) cultivated on acid sulfate soils
Nguyen Quoc Khuong, Thach Thanh Truyen, Chau So, Nguyen Duc Huy, Chau Hoang Trong, Le Thi My Thu, Le Thanh Quang, Ly Ngoc Thanh Xuan, Le Vinh Thuc

Abstract: Because, pineapple is an important crop in Vietnam, it is crucial to assess the nutrition status of the pineapple. Although the diagnosis and recommendation integrated system (DRIS) is a reliable approach, finding the right leaf position to diagnose is vital. Therefore, the aim of the current study is to determine suitable leaf positions for creating DRIS norms for macro- and micronutrients in pineapple leaf. Healthy pineapple leaves without pest or disease damages were sampled from 60 pineapple farms and analyzed for N, P, K, Na, Ca, Mg, Cu, Fe, Zn, and Mn concentrations. The results revealed that the critical yield was 13.3 t ha-1 among the 60 farms, dividing into 23 farms as the high-yielding group (≥ 13.3 t ha-1) and 37 farms as the low-yielding group (< 13.3 t ha-1). The concentrations of mineral nutrients (N, P, K, Ca, Mg, Cu and Zn) and pineapple fruit yields in the high-yielding group were greater than those in the low-yielding one. On the other hand, the Na, Fe, and Mn concentrations showed the opposite pattern. Selected leaf positions must possess significantly different nutrient ratios and have more than 14 nutrient ratio pairs between the two yield groups. Therefore, leaf positions from +15 to +19 were selected to create DRIS norms. Nine sets of DRIS norms have been created at leaf +1, +3, +7, +9, +16, +18, +21, +22, and +29 for plant pineapples.
Keywords: Acid sulfate soils; diagnosis and recommendation integrated system; mineral nutrition; plant pineapple
Citation: Khuong, N. Q., Truyen, Th. Th., So, Ch., Huy, N. D., Trong, Ch. H., Thu, Th. M., Quang, L. Th., Xuan, N. Th. & Thuc, L. V. (2025). Determination of appropriate leaf positions to establish the diagnosis and recommendation integrated systems for plant pineapple (Ananas comosus L.) cultivated on acid sulfate soils. Bulg. J. Agric. Sci., 31(1), 85–114.
References: (click to open/close) | Agbangba, E. C., Sossa, E. L., Dagbenonbakin, G. D., Diatta, S. & Akpo, L. E. (2011a). DRIS model parameterization to access pineapple variety Smooth Cayenne nutrient status in Benin (West Africa). Journal of Asian Scientific Research, 1(5), 254-264. Agbangba, E. C., Olodo, G. P., Dagbenonbakin, G. D., Kindomihou, V., Akpo, L. E. & Sokpon, N. (2011b). Preliminary diagnosis and recommendation integrated system model parameterization to access pineapple variety Perola nutrient status in Benin (West Africa). African Journal of Agricultural Research, 6(27), 5841-5847. Ali, M. M., Hashim, N., Abd Aziz, S. & Lasekan, O. (2020). Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Research International, 137, 109675. https://doi.org/10.1016/j.foodres.2020.109675. Aliyu, K. T., Huising, J., Kamara, A. Y., Jibrin, J. M., Mohammed, I. B., Nziguheba, G., Adam, A. M. & Vanlauwe, B. (2021). Understanding nutrient imbalances in maize (Zea mays L.) using the diagnosis and recommendation integrated system (DRIS) approach in the Maize belt of Nigeria. Scientific Reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-95172-7. Ancos, B., Sánchez-Moreno, C. & González-Aguilar, G. A. (2016). Pineapple composition and nutrition. In: Handbook of Pineapple Technology: Postharvest Science, Processing and Nutrition, John Wiley & Son, 221-239. https://doi.org/10.1002/9781118967355.ch12. Angeles, D. E., Sumner, M. E. & Barbour, N. W. (1990). Preliminary nitrogen, phosphorus, and potassium DRIS norms for pineapple. HortScience, 25(6), 652-655. https://doi.org/10.21273/HORTSCI.25.6.652. Bailey, J. S., Beattie, J. A. M. & Kilpatrick, D. J. (1997). The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards: I. Model establishment. Plant and Soil, 197(1), 127-135. https://doi.org/10.1023/A:1004236521744. Bangroo, S. A., Bhat, M. I., Ali, T., Aziz, M. A., Bhat, M. A. & Wani, M. A. (2010). Diagnosis and recommendation integrated system (DRIS)-A review. International Journal of Current Research, 10, 84-97. Bartholomew, D. P., Rohrbach, K. G. & Evans, D. O. (2002). Pineapple Cultivation in Hawaii. Honolulu (HI): University of Hawaii. Beaufils, E. R. (1973). Diagnosis and recommendation integrated system (DRIS): a general scheme for experimentation and calibration based on principles developed from research in plant nutrition. Soil Science Bulletin, 1, 132. Bhaduri, D. & Pal, S. (2013). Diagnosis and recommendation integrated system (DRIS): Concepts and applications on nutritional diagnosis of plants-a review. Journal of Soil and Water Conservation, 12(1), 70-79. Bleich, J. D. (2021). Trees and plants: the case of the pineapple. Tradition, 53(2), 110-145. Briat, J. F., Gojon, A., Plassard, C., Rouached, H. & Lemaire, G. (2020). Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. European Journal of Agronomy, 116, 126069. https://doi.org/10.1016/j.eja.2020.126069. Chen, J., Zeng, H. & Zhang, X. (2021). Integrative transcriptomic and metabolomic analysis of D-leaf of seven pineapple varieties differing in NPK% contents. BMC Plant Biology, 21(1), 1-19. https://doi.org/10.1186/s12870-021-03291-0. Chinnappan, S. (2022). DRIS norms for identifying yield limiting micronutrients in cocoa under coconut intercropping systems. Journal of Plant Nutrition, 45(8), 1214-1222. https://doi.org/10.1080/01904167.2021.1994592. FAO (2021). Major tropical fruits - Preliminary market results 2020. Markets and Trade. <URL: https://www.fao.org/documents/card/en/c/cb6196en/ Accessed 15 May 2022. FAO (2022). Food and agriculture organization of the United nations. Statistic division. <URL: https://www.fao.org/faostat/en/#data/QCL Accessed 15 May 2022. Ferrández-Cámara, M., Martínez-Nicolás, J. J., Alfosea-Simón, M., Cámara-Zapata, J. M., Melgarejo Moreno, P. & García-Sánchez, F. (2021). Estimation of diagnosis and recommendation integrated system (DRIS), compositional nutrient diagnosis (CND) and range of normality (RN) norms for mineral diagnosis of almonds trees in Spain. Horticulturae, 7(11), 481. https://doi.org/10.3390/horticulturae7110481. Guo, J., Jia, Y., Chen, H., Zhang, L., Yang, J., Zhang, J., Hu, X., Ye, X., Li, Y. & Zhou, Y. (2019). Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-018-37838-3. Hidayat, A. R. & Fahmi, A. (2020). Impact of land reclamation on acid sulfate soil and its mitigation. In: BIO Web of Conferences. EDP Sciences, 20, 01002. https://doi.org/10.1051/bioconf/20202001002 Hlisnikovský, L., Menšík, L., Čermák, P., Křížová, K. & Kunzová, E. (2022). Long-term effect of pig slurry and mineral fertilizer additions on soil nutrient content, field pea grain and straw yield under winter wheat–spring barley–field pea crop rotation on cambisol and luvisol. Land, 11(2), 187. https://doi.org/10.3390/land11020187. Hossain, M. F. (2016). World pineapple production: an overview. African Journal of Food, Agriculture, Nutrition and Development, 16(4), 11443-11456. https://doi.org/10.18697/ajfand.76.15620. Houba, V. J. G., Novozamsky, I. & Temminghof, E. J. M. (1997). Soil and plant analysis, Part 5. Department of soil science and plan nutrition. Wageningen Agricultural University. The Netherlands. Khuong, N. Q., Nhi, L. T. Y., Quang, L. T., Xuan, L. N. T. & Thuc, L. V. (2022a). Norms establishment of the diagnosis and recommendation integrated system at preflowering in pineapple (Ananas comosus L.) and its verification in case of nutrient omission trial by two consecutive crops. Communications in Soil Science and Plant Analysis, 1-17. https://doi.org/10.1080/00103624.2022.2138910. Khuong, N. Q., Anh, N. T., Dang, N. H., Han, L. V. B., Y, L. T. N., Xuan, L. N. T., Thu, L. T. M., Quang, L. T., Huu, T. N. & Thuc, L. V. (2022b). Determining an appropriate leaf position to establish norms of diagnosis and recommendation integrated system for ratoon pineapple. Asian Journal of Plant Sciences, 21, 173-198. https://doi.org/10.3923/ajps.2023.173.198. Lemaire, G., Sinclair, T., Sadras, V. O. & Bélanger, G. (2019). Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. Agronomy for Sustainable Development, 39(2), 27. https://doi.org/10.1007/s13593-019-0570-6. Letzsch, W. S. (1985). Computer program for selection of norms for use in the diagnosis and recommendation integrated system (DRIS). Communications in Soil Science and Plant Analysis, 16(4), 339-347. https://doi.org/10.1080/00103628509367609. Letzsch, W. S. & Sumner, M. E. (1984). Effect of population size and yield level in selection of diagnosis and recommendation integrated system (DRIS) norms. Communications in Soil Science and Plant Analysis, 15, 997-1006. https://doi.org/10.1080/00103628409367537. Liu, Q., Xu, H. & Yi, H. (2021). Impact of fertilizer on crop yield and C: N: P stoichiometry in arid and semi-arid soil. International Journal of Environmental Research and Public Health, 18(8), 4341. https://doi.org/10.3390/ijerph18084341. Ljung, K., Maley, F., Cook, A. & Weinstein, P. (2009). Acid sulfate soils and human health a millennium ecosystem assessment. Environment International, 35(8), 1234-1242. https://doi.org/10.1016/j.envint.2009.07.002. Maia, V. M., Pegoraro, R. F., Aspiazú, I., Oliveira, F. S. & Nobre, D. A. C. (2020). Diagnosis and management of nutrient constraints in pineapple. In: Fruit Crops, Elsevier, 739-760. https://doi.org/10.1016/B978-0-12-818732-6.00050-2. Mayakaduwage, S., Mosley, L. M. & Marschner, P. (2021). Phosphorus pools in acid sulfate soil are influenced by pH, water content, and addition of organic matter. Journal of Soil Science and Plant Nutrition, 21(2), 1066-1075. https://doi.org/10.1016/j.geoderma.2020.114692. Minh, V. Q., Vu, P. T., Khoa, L. V., Du, T. T., Tri, L. V. & Dung, T. V. (2020). Major land uses on acid sulfate soils of Hau Giang province, Vietnam. International Journal of Environment, Agriculture and Biotechnology, 5(1), 192-196. https://dx.doi.org/10.22161/ijeab.51.27. Morales, J., Rodríguez-Carretero, I., Martínez-Alcántara, B., Canet, R. & Quiñones, A. (2022). DRIS norms and sufficiency ranges for persimmon Rojo Brillante grown under mediterranean conditions in Spain. Agronomy, 12(6), 1269. https://doi.org/10.3390/agronomy12061269. Neto, A. J. D. L., Natale, W., Rozane, D. E., de Deus, J. A. L. D. & Filho, V. A. F. (2022). Establishment of DRIS and CND standards for fertigated Prata Banana in the Northeast, Brazil. Journal of Soil Science and Plant Nutrition, 22(1), 765-777. https://doi.org/10.1007/s42729-021-00687-7. Panhwar, Q. A., Naher, U. A., Radziah, O., Shamshuddin, J. & Razi, I. M. (2015). Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria. Molecules, 20(3), 3628-3646. https://doi.org/10.3390/molecules20033628. Sema, A., Maiti, C. S., Singh, A. K. & Bendangsengla, A. (2010). DRIS nutrient norms for pineapple on alfisols of India. Journal of Plant Nutrition, 33(9), 1384-1399. https://doi.org/10.1080/01904167.2010.484286. Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. & Sumner, M. E. (1996). Eds. Methods of soil analysis. Part 3-Chemical methods. John Wiley & Sons. https://dx.doi.org/10.2136/sssabookser5.3. Teixeira, L. A. J., Quaggio, J. A. & Zambrosi, F. C. B. (2007). Preliminary DRIS norms for Smooth Cayenne pineapple and derivation of critical levels of leaf nutrient concentrations. In: VI International Pineapple Symposium, 822, 131-138. https://doi.org/10.17660/ActaHortic.2009.822.15. Walworth, J. L. & Sumner, M. E. (1987). The diagnosis and recommendation integrated system (DRIS). In: Advances in Soil Science, Springer, New York, NY, 149-188. https://doi.org/10.1007/978-1-4612-4682-4_4. |
|
| Date published: 2025-02-25
Download full text