Effects of rainfall on selected soil physico-chemical properties of marginal soil cultivated with MD2 pineapple crop
Hasmah Mohidin, Mohd Yazid Mohd Anas Khan
, Azlina Narawi
, Khairul Fikri Tamrin
, Azilawati Banchit
, Rosmiyati Hasni
, Radziah Jack, Syahira Jos
, Sulaiman Man
Abstract: This study assessed the effects of rainfall on soil physico-chemical properties (pH, moisture, temperature, Nitrogen value, Phosphorus value and Potassium value) of MD2 pineapple cultivation on marginal soil, and also investigated correlation between rainfall and soil physico-chemical properties based on IoT-based monitoring. Agromon Smart Agriculture and NPK Sensors (Agromon) that is equipped with a Sigfox-based wireless transmitter was used to provide real-time marginal soil properties data from an experimental MD2 pineapple field plot in UiTM Sarawak. Rainfall data between March and July 2021 for Samarahan Rainfall Station were obtained from Department of Irrigation and Drainage, Sarawak (DID). Soil properties data were transmitted from field plot gateway to the nearest Sigfox base station in Santubong, and subsequently to SATU dashboard server in order to be accessible to all users. Agromon demonstrated the capability of IoT system in monitoring selected soil properties across favored and unfavored weather conditions. Pineapple farmers can make timely and cost-effective farm operation decision anywhere to optimize plant vigor and therefore, improve yield.
Keywords: IoT; leaching; rainfall; soil moisture; soil nutrient; soil pH; soil temperature
Citation: Mohidin, H., Khan, M. Y. M. A., Narawi, A., Tamrin, K. F., Banchit, A., Hasani, R., Jack, R., Jos, S. & Man, S. (2024). Effects of rainfall on selected soil physico-chemical properties of marginal soil cultivated with MD2 pineapple
crop. Bulgarian Journal of Agricultural Science, 30(1), 43–52.
References: (click to open/close) | Abdul Kader, M., Senge, M., Abdul Mojid, M. & Nakamura, K. (2017). Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. International Soil and Water Conservation Research, 5(4), 302-308. https://doi.org/10.1016/j. iswcr.2017.08.001. Ahmed, O. H., Ahmad, H. M., Musa, H. M., Rahim, A. A. & Rastan, S. O. (2005). Applied K fertilizer use efficiency in pineapples grown on a tropical peat soil under residues removal. Scientific World Journal, 5, 42-49. https://doi.org/10.1100/ tsw.2005.9. PMID: 15674449. PMCID: PMC5936563. Albornoz, F., Lieth, J. & Gonzalez Fuentes, J. (2014). Effect of different day and night nutrient solution concentrations on growth, photosynthesis, and leaf NO3- content of aeroponically grown lettuce. Chilean Journal of Agricultural Research, 74, 240-245. https://doi.org/10.4067/S0718-58392014000200017. Balamurugan, R. Dineshkumar, T. Malarvizhi, C. Yogeshwaran, A., Kaathik, K. & Sagayaraj, R. (2021). IoT Based Farm Housing Using NPK Sensors. Annals of the Romanian Society for Cell Biology, 25(6), 581–590. Retrieved from https:// www.annalsofrscb.ro/index.php/journal/article/view/5467. Bolan, N. S. & Hedley, M. J. (2003). Role of carbon, nitrogen, and sulfur cycles in soil acidification. In Handbook of Soil Acidity; Rengel, Z., Ed.; Marcel Dekker: New York, NY, USA, 29–56. Boll Kassim, N. Q. (2016). Nutrients dynamics in pineapple (Ananas comosus L.) planted peat soil under fluctuating water table. N. Q. Boll Kassim (Ed). In: The Doctoral Research Abstracts. IGS Biannual Publication, 10(10). Institute of Graduate Studies, UiTM, Shah Alam. Codeluppi, G., Cilfone, A., Davoli, L. & Ferrari, G. (2020). LoraFarM: A LoRaWAN-based smart farming modular IoT architecture. Sensors, 20(7). https://doi.org/10.3390/s20072028. Crane, J. H. (2020). Pineapple Growing in the Florida Home Landscape, HS7. Horticultural Sciences Department, The Institute of Food and Agricultural Sciences, University of Florida, USA. https://edis.ifas.ufl.edu/publication/MG055. Department of Irrigation and Drainage Sarawak (2021). Data Siri Masa Taburan Hujan, (data). Department of Irrigation and Drainage, Sarawak. DoA Sarawak (2019). Agricultural Statistics of Sarawak. Department of Agriculture, Sarawak. ISSN 0127-4708. Doshi, J., Patel, T. & Bharti, S. K. (2019). Smart Fanning using IoT, a solution for optimally monitoring fanning conditions. Procedia Computer Science, 160, 746–751. https://doi. org/10.1016/j.procs.2019.11.016. Fenila Naomi, J., Theepavishal, R. A., Madhuaravindh, K. S. & Tharuneshwar, V. (2019). A soil quality analysis and an efficient irrigation system using agro-sensors. International Journal of Engineering and Advanced Technology, 8(5), 703–706. Gómez-Chabla, R., Real-Avilés, K., Morán, C., Grijalva, P. & Recalde, T. (2019). IoT Applications in Agriculture: A Systematic Literature Review. R. Valencia-García et al. (Eds.). Pro¬ceedings for ICT for Agriculture and Environment Second International Conference (CITAMA 2019), Advances in Intelligent Systems and Computing, 68–76. https://doi.org/10.1007/978-3- 030-0728-4_8. Goutham Chand, K., Sidhendra, M. & Hussain, M. A. (2018). Soil nutrient measurement in paddy farming using IoT. International. Journal of Engineering & Technology, 7, 356–358. https://doi.org/10.14419/ijet.v7i2.7.10718. Han, S. H., An, J. Y., Hwang, J., Kim, S. B. & Park, B. B. (2016). The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. Forest Science and Technology,12, 137–143. Hubanks, H. L., Deenik, J. L. & Crow, S. E. (2018). Getting the Dirt on Soil Healthand Management. Elsevier Inc. Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore. S. & Kadel, R. (2021). A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) based Sustainable Smart Farming. Sustainability, 13, 1821. https://doi.org/10.3390/su13041821. Kapse, S., Kale, S., Bhongade, S., Sangamnerkar, S. & Gotmare, Y. (2020). IOT Enable Soil Testing & NPK Nutrient Detection. JAC: A Journal of Composition Theory, 13(5), 310–318. ISSN 0731-6755. Kumar, M. (2021). Determination of Soil Nutrients Using Arduino. International Research Journal of Engineering and Technology, 8(4). e-ISSN: 2395-005. p-ISSN: 2395-0072. Lavanya, G., Rani, C. & Ganeshkumar, P. (2020). An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustainable Computing: Informatics and Systems, 28. https://doi.org/10.1016/j.suscom.2019.01.002. Maas, E. F., Tie, Y. L. & Lim, C. P. (1986). Sarawak land capability classification and evaluation for agricultural crops, second edition. Soil Division, Research Branch, Department of Agriculture, Sarawak. Mahmud, M., Abdullah, R. & Yaacob, J. S. (2018). Effect of vermicompost amendment on nutritional status of sandy loam soil, growth performance, and yield of pineapple (Ananas comosus var. MD2) under field conditions. Agronomy, 8(9), 183. https://doi.org/10.3390/agronomy8090183. Malézieux, E. & Bartholomew, D. P. (2003). Plant nutrition. In D. P. Bartholomew, R. E. Paull and K. G. Rohrbach (Eds.). The pineapple: botany, production and uses, 143-166. CAB International. https://doi.org/10.1079/9780851995038.0143. Met Malaysia (2021a). Permulaan Fasa Peralihan Monsun. Press Release 12 March 2021. Malaysian Meteorological Department, Ministry of Environment and Water. Met Malaysia (2021b). Permulaan Monsun Barat Daya. Press Release 10 May 2021. Malaysian Meteorological Department, Ministry of Environment and Water. Mohammaddoust-e-Chamanabad, H. R., Asghari, A. & Tulikov, A. M. (2007). The Effects of Weed-Crop Competition on Nutrient Uptake as Affected by Crop Rotation and Fertilizers. Pakistan Journal of Biological Sciences, 10, 4128-4131. https://doi.org/10.3923/pjbs.2007.4128.4131. MPIB (2020). Kursus Asas Teknologi Tanaman Nanas Malaysia. Malaysian Pineapple Industry Board. 16-17 November 2020. Dewan Suarah Kota Samarahan, Sarawak, Malaysia. NRCS (2019). Soil pH. Soil Quality Kit - Guides for Educators. Education and Outreach Publications, Natural Resources Con¬servation Service, United States Department of Agriculture. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrc¬s142p2_053293.pdf. Ojha, T., Misra, S. & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66-84. https://doi.org/10.1016/j.compag.2015.08.011. Oliveira Jr., A., Resende, C., Pereira, A., Madureira, P., Gonçalves, J., Moutinho, R., Soares, F. & Moreira, W. (2020). IoT Sensing Platform as a Driver for Digital Farming in Rural Africa. Sensors, 2012), 3511. https://doi.org/10.3390/ s20123511. Ruslan, A. A., Salleh, S. M., Hatta, S. F. W. M. & Sajak, A. A. B. (2021). IoT Soil Monitoring based on LoRa Module for Oil Palm Plantation. International Journal of Advanced Computer Science and Applications. 12(5), 215–220. https://doi. org/10.14569/IJACSA.2021.0120527. Sehler, R., Li, J., Reager, J. T. & Ye, H. (2019). Investigating Relationship Between Soil Moisture and Precipitation Globally Using Remote Sensing Observations. Journal of Contemporary Water Research and Education, 168(1), 106-118. Universities Council on Water Resources. https://doi.org/10.1111/j.1936- 704X.2019.03324.x. Wondernica Research (2021). Agromon. https://www.wonderni¬ca.com/agromon.html. Zubir, M. N., Md Sam, N. S., Abdul Ghani, N. S. & Ismail, A. A. (2020). Growth performance of pineapple (Ananas Comosus var. MD2) with different application of granular fertilizer on tropical peat soil. International Journal of Agriculture, Forestry and Plantation, 10. ISSN 2462-1757.
|
|
| Date published: 2024-02-26
Download full text