Evaluation nanoantibacterial potential of TiO2 with M. oleifera plant extract against food spoilage pathogens
Hanan Abdullah Ali

Abstract: Foods are exposed to deterioration and spoilage, known as microbiological spoilage, due to the growth and activity of pathogenic microorganisms, particularly bacteria.
The role of titanium particles in inhibiting the growth of many microorganisms was known. Additionally, the use of plants and their extracts, specifically medicinal ones, in preserving various foods has become widespread. The use of nano-titanium and the Moringa oleifera plant against pathogenic bacteria that cause food poisoning in food has not been previously discussed. The current study aimed to investigate the effect of titanium dioxide and dried moringa leaf extract, separately and when mixed, on the growth of B. cereus and K. pneumoniae. A completely randomized block design was used to implement the experiment, with three replications for each treatment.SEM and AFM were used to investigate nanoparticles characterized by titanium dioxide/DMLE, which improved the physical and granular properties and regular shape of the nanoparticles with a thickness of 1-4 nm. Titanium dioxide / DMLE particles with a size of (1- 4) nanometers showed a bacterial antagonism against B.cereus and K.pneumoniae. The minimum inhibitory level was recorded (1.5 mg/ml of TiO2 + 6 mg/ml of DMLE) and (3 mg/ml of TiO2 + 12 mg/ml of DMLE), respectively, compared with the minimum inhibitory concentration of titanium dioxide (3, 6 mg/ml) and DMLE, which recorded (24, 48 mg/ml ). The synergistic action of titanium dioxide/DMLE resulted in the highest inhibition diameter (14.9 and 14.6 mm) compared to titanium dioxide (13.5 and 12.4 mm) and DMLE (10.3 and 10.0 mm) towards B. cereus and K. Pneumoniae, respectively.
Keywords: AFM; MIC; Moringa oleifera leaves; pathogenic bacteria; SEM; Titanium dioxide
Citation: Ali, H. A. (2025). Evaluation nanoantibacterial potential of TiO2 with M. oleifera plant extract against food spoilage pathogens. Bulg. J. Agric. Sci., 31(6), 1245–1251
| References: (click to open/close) | Abdelghany, T. M., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M. M., Ganesh, A., Helmy, E. A. M. & Mabrouk, A. S.(2018). Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. Bio Nano Science., 8, 5 - 16. Adeyinka, A., Bamgbose, O. T. & Nagarjun, A. P. (2018). Antimicrobial activity of Moringa oleifera lam. Extract against some food-borne microorganisms and some human pathogens Int. J. Sci. Res, 7(5), 909 - 910. Ali, M. S., Anuradha, V., Akila, M. & Yogananth, N. (2017). Anti-genetic effect of TiO2 nanoparticles biosynthesized from the sargassum poly system. J. Biomed. Res., 5(4), 1 - 12. Ahmad, S. Y., Friel, F. & Mackay, D. (2020). The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial. Nutrients 12(11), 3408. doi: 10.3390/nu12113408. Alibi, S., Crespo, D. & Navas, J. (2021). Plant-derivatives small molecules with antibacterial Activity. Antibiotics 10, 231. doi: 10.3390/antibiotics10030231. Al-Jubouri, M. W. (1990). The science of pathogenic bacteria. 1st edition. Ministry of Higher Education and Scientific Research. Mosul University Mosul. Iraq, 47 - 75. Aravind, M., Amalanathan, M. & Mary, S. M. (2021). Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl. Sci., 3(4), 409. https://doi.org/10.1007/s42452-021-04281-5. Baranwal, A., Srivastava, P., Kumar, P., Bajpai, V. K., Maurya, P. K. & Chandra, P. (2018). Prospects of nanostructure materials and their composites as antimicrobial agents.Front Microbiol., 9, e422. Bukar, A., Uba, A. & Oyeyi, T .I. (2010). Antimicrobial profile of moringa oleifera lam. extracts against some food-borne microorganisms. Bayero J. of Pure and Appl. Sci., 3(1), 43 – 48. Castillo-Henríquez, L., Alfaro-Aguilar, K., Ugalde-Álvarez, J., Vega-Fernández, L., Montes de Oca-Vásquez, G. & Vega-Baudrit, J. R. (2020). Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials, 10(9), 1763. https://doi.org/10.3390/nano10091763. Chen, H., Wang, B., Feng, B., Du, W., Ouyang, H., Chai, Z. & Bi, X. (2015). Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology., 9(3), 302 - 312. doi: 10.3109/17435390.2014.929189. Das, M. P., Livingstone, J. R., Veluswamy, P. & Das, P. (2017). Exploration of Wedelia chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial, and in vitro cytotoxic applications. J Food Drug Anal., 26, 917 - 925. Egmi, C., Joshi, B., Ray, S. K., Gyawali, G. & Pandey, R. P. (2018). Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front. Chem., 6, 33. doi: 10.3389/fchem.2018.00033. Ghosh, S., Nandi, S. & Basu,T. (2021). Nano-Antibacterials Using Medicinal Plant Components: An OverviewFront. Microbiol., 12, 1 – 16. https://doi.org/10.3389/fmicb.2021.768739. Hara, Y., Akazawa, K., Shibata, K., Hirota, T., Kodama, Y., Amemiya, T., Wang, J. & Yamaguchi, T. (2020). Seed-mediated gold nanoparticle synthesis via photochemical reaction of benzoquinone. Colloids Surf. Physicochem. Eng. Asp., 586, 124209. Hasan, A. A., Abdullah, R. M. & Hameed, H. Q. (2020). Effect of Trigonellafoenum extract and TiO2 nanoparticles against Acinetobacter baumannii, Ann. Trop. Med. Public Health, 23(S18), SP231814. DOI: http://doi.org/10.36295/ASRO.2020.231814. Hassan, H., Omoniyi, K. I., Okibe, F. G., Nuhu, A. A. & Echioba, E. G. (2019). Evaluation of Antibacterial Potential of Biosynthesized Plant Leave Extract Mediated Titanium Oxide Nanoparticles using Hypheae Thiebeace and Anannos Seneglensis. Int. J. Appl. Environ. Sci, 23(10), 1795 - 1804. Hariharan, D., Srinivasan, K. & Nehru, L. C. (2017). Synthesis and Characterization of TiO2 Nanoparticles Using Cynodon dactylon Leaf Extract for Antibacterial and Anticancer (A549 Cell Lines) Activity. J. nanomed. Res., 5(6), 1 - 12. He, Z., Cai, Q., Fang, H., Situ, G., Qiu, J., Song, Sh. & Chen, J. (2013). photocatalytic activity of TiO2 containing anatase nanoparticles rutile nano flower structure consist of nanorods. J. Environ. Sci, 25(12), 2460 - 2468. DOI:10.1016/S1001-0742(12)60318-0. Levinson, W. (2002). Review of medical microbiology and immunology. Eleventh edition, 79 - 80. London.United Kingdom. Liao, Ch., Li, Y. & Chin, T. (2020). Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. Nanomaterials (Basel), 10(1), 124. doi: 10.3390/nano10010124. Li, Y., Tseng, Y. D., Kwon, S. W., Despaux, L., Bunch, J. S. & Mceuen, P. L. (2004). Controlled assembly of dendrimer-like DNA. Nat. Mater., 3, 38 - 42. Matai, I., Pandey, S. K., Garg, D., Rani, K. & Sachdev, A. (2020). Phytogreen synthesis of multifunctional nano selenium with antibacterial and antioxidant implications. Nano Express, 1, 010031. doi: 10.1088/2632-959X/ab8bea. Nabi, M., Tabassum, N. & Ganai, A. B. (2022). Phytochemical screening and antibacterial the activity of Skimmia anquetilia N. P. Taylor and Airy Shaw: A first study from Kashmir Himalaya. Front. Plant Sci., 13, 937946. doi: 10.3389/fpls.2022.937946. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B. & Ramirez, J. T.(2005). The bactericidal effect of silver nanoparticles.Nanotechnology, 16, 2346 - 2353. Nasrollahzadeh, M., Maham, M. & Sajadi, S. M. (2015). green synthesis of Cuo nanoparticles by aqueous extracts of Gurdella ournefortile and evaluation of their catalytic activity for the synthesis of N- monosubs titntal ureas and reduction of 4- nitrophenol. J. Colloid. Interface Sci., 455, 245 - 253. doi 10.1016/j.jcis.2015.05.045. Padmavathy, N. & Vijayaraghavan, R. (2011). Interaction of ZnO nanoparticles with Microbes - a physio and biochemical assay. J. Biomed. Nanotechnol., 7(6), 813 - 822. Ramaswamy, V. N., Jagtap, V., Vijayanand, S., Bhange, D. S. & Awati, P. S. (2008). Photocatalytic decomposition of methylene blue on Nanocrystalline titani prepared by different methods. Mater. Res. Bull., 43, 1145 - 1152. Ranj, A. O., Kh, H., Abdel-Rahman, M. M., Saleh, S. Q., Sazgar, F. & Al- Hawezi, S. (2023). Effect of adding titanium dioxide nanoparticles on anti-microbial activity and surface detail reproduction of dental alginate. J. Baghdad Coll. Dent., 35(1), 36 - 48. Rawat, S. (2015). Food spoilage: microorganisms and their prevention. A review. Asian J. Plant Sci. Res., 5(4), 47 - 56. Shafie, N. A., Zulkifli, N. S., Ali, R. R., Tarmizi, Z. I. & Faizo, S. M. (2024). Green Synthesis of Titanium Dioxide Nanoparticles Using Extraction of Psidium Guajava for Smart Packaging Application. J. Nanosci. Nanotechnology, 11(1), 16 - 23. https://doi.org/10.37934/jrnn.11.1.1623. Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T. & Adeyemi, O. S. (2021). Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 13, 7(3), e06456. doi: 10.1016/j.heliyon.2021.e06456. Stahl, R. (1969). Thin layer chromatography. a laboratory Handbook, 2nd edition. Translated by Ash worth M.R .Springr , verlag and Berlin, 281 - 296. Tandon, M., Gupta, A. & Kaur, A.(2023). Green synthesized titanium dioxide starch nanocomposites as a sustainable alternative to combat spoilage of packaged food. Nanotechnol. Environ. Eng, 8, 461 - 468. https://doi.org/10.1007/s41204-022-00282-w. Wang, L., Hu, C. & Shao, L. (2017). The antimicrobial activity of nanoparticles: present Situation and prospects for the future. Int. J. Nanomedicine, 14(12), 1227 - 1249. doi: 10.2147/IJN.S121956. Wikler, M. A. (2007). Performance Standards for Antimicrobial Susceptibility Testing. Seventeenth Informational Supplement; Part M2-A9. M100-S17; C.L.S.I. (Clinical and Laboratory Standard Institute): Pennsylvania, PA, USA, 34 - 114. Xie, J. & Hung, Y. C. (2019). Methodology to evaluate the antimicrobial effectiveness of UV- activated TiO2 nanoparticl-embadded cellulose acetate film. Food control, 106(2), 11 - 16. DOI:10.1016/j.foodcont.2019.06.016. Yahya, N. A., Attan, N. & Wahab, R. A. (2018). An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds. Food Bioprod. Process, 112, 69 – 85. Yang, P., Ch, Lu., Hua, N. & Du, Y. (2002). Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater. Lett., 57(4), 794 - 801. |
|
| Date published: 2025-12-16
Download full text