Characteristics of triticale breeding lines and cultivars from IPGR Genebank in Sadovo
Bogdan Bonchev

, Radoslav Chipilski

, Zlatina Uhr

, Teodora Angelova

Abstract: The study of breeding lines and cultivars of triticale was conducted between the 2019/2020 and 2022/2023 growing periods in an experimental field in Sadovo, Bulgaria. The most significant overall estimated positive indirect effect on yield is associated with the number of grains per spike, derived from the weight of grains per spike. The weight of grains per spike had the most significant positive correlation with grain yield. A negative correlation is confirmed between wet gluten content and crude protein with grain yield and spike-related traits. Wet gluten content and protein content had a positive correlation with thousand kernel weight. The standard cultivar Kolorit and breeding lines TC 295 and BGR 30816 had a high value of chlorophyll content index and grain yield. The investigated breeding lines and cultivars from the IPGR genebank have lower stems than the cultivar Rakita. An increase in harvest index in breeding line TC 295 and cultivar AD 7291 is associated with high grain yield. Breeding line BGR 26787 has a high chlorophyll content index, crude protein, and wet gluten content. However, this line occurs in the opposite interaction between technological characteristics and low grain yield, for breeding high-grain-yield triticale from investigated lines and cultivars in the IPGR genbank in Sadovo. A delicate balance between plant height, harvest index, and spike-related traits is necessary.
Keywords: CCI index; correlation; crude protein; elements of grain yield; triticale
Citation: Bonchev, B., Chipilski, R., Uhr, Z. & Angelova, T. (2025). Characteristics of triticale breeding lines and cultivars from IPGR Genebank in Sadovo. Bulg. J. Agric. Sci., 31(6), 1126–1136
| References: (click to open/close) | Akbarian, А., Arzani, A., Salehi, M. & Salehi, M. (2011). Evaluation of triticale genotypes for terminal drought tolerance using physiological traits. Indian Journal of Agricultural Sciences, 81, 1110 - 1115. Béres, B. L., Lupwayi, N. Z., Larney, F. J., Ellert, B., Smith, E. G., Turkington, T. K., Pageau, D., Semagn, K. & Wang, Z. (2018). Rotational Diversity Effects in a Triticale-based Cropping System. Cereal resurch communications, 46, 717 - 728. https://doi.org/10.1556/0806.46.2018.051. Blum, A. (2014). The Abiotic Stress Response and Adaptation of Triticale – A Review Cereal Research Communications, 42(3), 359 – 375. Burdujan, V., Rurac, M. & Melnic, A. (2014). Productivity and quality of winter triticale (X Triticosecale Wittmack) in multifactorial experiments. Scientific Papers. Series A. Agronomy, 57, 119 - 122. Desheva, G. & Kachakova, S. (2013). Correlations between main structural elements of yield in common winter wheat cultivars. Rastenievadni naulki, 50, 5-8 (Bg). Dimitrov, E., Velcheva, N. & Uhr, Z. (2018). Genetic diversity in triticale breeding lines, stored in IPGR Sadovo. International Journal of Innovative Approaches in Agricultural Research, 2(2), 103 – 110. https://doi.org/10.29329/ijiaar.2018.141.3. Dimitrov, E., Uzunova, K. & Uhr, Z. (2020). Use of cluster analysis and analysis of the main components for evaluation for of triticale samples. 75 years Agricultural university-Plovdiv Jubelee Scientific International Conference, Plovdiv-26-28, November 2020, 55 – 64. http://dx.doi.org/10.22620/agrisci.2021.29.007. Frost, J. (2020). How To Interpret R-squared in Regression Analysis. Available at: https://statisticsbyjim.com/. Genchev, G., Marinkov, E., Yovchev, V. & Ognyanova. A., (1975). Biometric methods in plant breeding, genetics and selection. Zemizdat, Sofia, 280 - 295 (Bg). Georgieva, R. & Kirchev, H. (2018) The effect of PGRs and different fertilization levels on the dry matter formation and phenological development of triticale varieties. Proceedings of the Internationa Agricultural Symposium “Agrosym 2018“, Bosnia and Hercegovina, 134 - 138. Gitelson, A. A., Peng, Y., Viña, A., Arkebauer, T. & Schepers, J. S. (2016) Efficiency of chlorophyll in gross primaryproductivity: A proof of concept and application in crops. Journal Plant Physiology, 201, 101 - 110. JMP, Version 5.0 .1, (2002). A Business unit of SAS 1989 – 2002, SAS Institute Inc. Jolankai, M. & Nemeth, Т. (2002). Crop responses induced by precision management techniques. Acta Agronomica Hungaria, 50(Suppl.), 173 - 178. Kirchev, H., Terziev, G., Tonev, T. K. & Semkova, N. (2007). Formation of biological yield in different triticale varieties under nitrogen deficiency conditions. Field Crops Studies, 4(2), 293 – 298. Kirchev, H. & Muhova, A. (2018). Phenological development of triticale varieties depending on the weather conditions. XXIII International Symposium on Biotechnology, 9-10 March 2018, Faculty of Agronomy, Čačak, Serbia, 57 - 62. Kirchev, H. (2019). Triticale, Monography, Print house Uchy media&design, 60. Koshkin, S. (2016). Criteria for assessing the reproductive potential of ancient cultivars of common winter wheat and the possibility of their use in the breeding process. Abstract of PhD Thesis, Krasnodar, 24-28 (Ru). Lalević, D., Milasinović, B., Biberdźić, M., Vuković, A. & Milenković, L. (2022). Differences in grain yield and grain quality traits of winter triticale depending on the variety, fertilizer and weather conditions. Applied Ecology and environmental research, 20(5), 3779 - 3792. Budapest, Hungary. https://www.aloki.hu/pdf/2005_37793792.pdf. Larter, E. N., Shebeski, L. H. Mc Ginnis, R. C., Evans, L. & Kaltsikes, P. (1970). Rosner, a hexsaploid tritiale cultivar. Canadian Journal of Plants, 50, 122-124 Lorenz, K. (2003) TRITICALE. Encyclopedia of Food Science & Nutrition., 5873-5877 Markova-Ruzdik, N. (2015). Characterization of autumn forms of barley (Hordeum vulgare L.) from different geographical origins, Abstract of PhD Thesis, Goce Delchev University, Stip, Google scholar: http://eprints.ugd.edu.mk/13135/. Méndez-Espinoza, A. M., Romero-Bravo, S., Estrada, F., Garriga, M., Lobos, G. A., Castillo, D., Matus, I., Aranjuelo, I. & del Pozo, A. (2019). Exploring Agronomic and Physiological Traits Associated With the Differences in Productivity Between Triticale and Bread Wheat in Mediterranean Environments. Frontiers in Plant Science, 10, 404. doi: 10.3389/fpls.2019.00404. Microsoft Excel-Microsoft Corporation, One Microsoft Way Redmond, WA 98052 - 6399. Monteoliva, M. I., Guzzo, M. C. & Posada, G. A. (2021). Breeding for Drought Tolerance by Monitoring Chlorophyll Content. Gene technology, 10, 165. Muhova, A. (2018). Technological study of options for growing triticale in crop rotation based on the principles of organic farming. Abstract of Dissertation, Agricultural academy of Sofia, Institute of crops, Chirpan, 1 – 31. http://dx.doi.org/10.13140/RG.2.2.20431.23209. Muhova, A. & Stefanova-Dobreva, S. (2021a). Triticale (x Triticosecale Wittm.) grain quality under organic farming. Journal of Mountain Agriculture on the Balkans, 25(1), 245 - 260. Мuhova, A., Dobreva, S. & Sirakov, K. (2021b). Yield components of triticale after applied electromagnetic stimulation of seeds. Scientific Papers. Series A. Agronomy, LXIV(2), 281 - 289, www.agronomyjournal.usamv.ro/pdf/2021/issue_2/Art41.pdf. Naumann, J. C., Young, D. R. & Anderson, J. E. (2008). Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environmental and Experimental Botany, 63, 402 - 409. Padilla, F. M., Gallardo, M., Peña-Fleitas, M. T., De Souza, R. & Thompson, R. B. (2018). Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensor, 18, 2083. Ramazani, S. H. R. & Izanloo, A. (2019). Evaluation of drought tolerance of triticale (xTriticosecale Wittm. ex A. Camus) genotypes along with bread wheat and barley genotypes. Acta agriculturae Slovenica, 113(2), 337 – 348. DOI:10.14720/aas.2019.113.2.15. Randhawa, H. B. L. & Graf, R. J. (2015). Triticale Breeding - Progress and Prospect. 10.1007/978-3-319-22551-7_2. Salmon, D., Mergoum, M. & Gómez-Macpherson, H. (2004). Triticale production and management. In: Triticale improvement and production, ed. M. Mergoum and H. Gómez-Macpherson. Fao plant production and protection paper, 179, 27 - 36. Simmonds, N. W. (1976). Evolution of crop plants. (Ed) Longman, New York. Sims, D. A. & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing Environmental, 81, 337 - 354. Slafer, G., Savin, A. R. & Sandras, V. (2014). Coarse and fine regulation of wheat yeald components in response to genotype and environment, FCS, 3(2), 167 – 175. Stefanova-Dobreva, S. (2019). Technological study of possibilities for growing triticale varieties at four rates of fertilization and foliar feeding with Lactofol O, PhD Thesis, SSA, IPK-Chirpan, 1-28 (Bg). SPSS Inc., IBM Corporation, Statistical package for the social sciences (SPSS 19). Tohver, M., Kann, A., Täht, R., Mihhalevski, A. & J. Hakman, J. (2005). Quality of triticale cultivars suitable for growing and bread-making in northern conditions. Food Chemistry, 89, 125 - 132. Tsenov, N., Atanasova, D. & Gubatov, T. (2013). Genotype x environment effects on common wheat productivity traits. I. Nature of interaction, Scientific Proceedings of IZ - Karnobat, 2(1), 57 - 70. Vandev, D. L. (2003). Notes on Applied Statistics 2. Sofia University "St. Kliment Ohridski", Faculty of Mathematics and Informatics. Probability, Operations Research and Statistics, Topic 9, Step wise regresion, 54 - 61. Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R. K., Howell, G., Pathak, H. & Sumfleth, K. (2009). Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in agronomy, 101, 59 - 122. https://doi.org/10.1016/S0065-2113(08)00802-X. Wilson, A. S. (1876). On wheat and rye hybrids. Transactions and Proceedings of the Botanical Society, Edinburg, 12, 286. Woś, H. & Brzeziński, W. (2015). Triticale for Food—The Quality Driver. In: Eudes, F. (eds) Triticale. Springer, Cham. https://doi.org/10.1007/978-3-319-22551-7_11. Zanke, C., Ling, J., Plieske, J., Kollers, S., Ebmeyer, E., Korzun, V., Argillier, O., Stiewe, G., Hinze, M., Neumann, F., Eichhorn, A., Polley, A., Jaenecke, C., Ganal, M. W. & Röder, M. (2015). Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Frontiers in Plant Science, 6, 644. doi:10.3389/fpls.2015.00644. Zecevic, V., Kneževic, D., Boškovic, J., Micanovic, D. & Dozet, G. (2010). Effect of nitrogen fertilization on winter wheat quality. Cereal Research Communications, 38(2), 244 - 250. https://www.biotill.com/tritiacale. |
|
| Date published: 2025-12-16
Download full text