Effects of plant growth regulators on in vitro propagation of Solanum curtilobum, a threatened bitter potato
Erika Tolentino-Dextre, Angel Macedo-Ballico, Carmen Tamariz-Angeles, Percy Olivera-Gonzales

Abstract: Solanum curtilobum Juz. & Bukasov is a bitter potato, scarcely cultivated and placed as a vulnerable species. The effects of plant growth regulators (PGR) were evaluated to approach its micropropagation using Murashige & Skoog medium supplemented with sucrose 3%, phytagel 0.3% adjusted pH 5.7, 16/8 h photoperiod and at 20°C. The shoots of greenhouse plants were disinfected with 0.50, 0.75, and 1.0% NaClO. PGRs applied for multiplication were benzylaminopurine (BAP) or gibberellic acid (GA3) at 0.5, 1.0, 1.5, 2.0 mgL-1, and 1.5 mgL-1 BAP + GA3 at 0.5, 1.0, 1.5, 2.0 mgL-1, whereas indoleacetic acid (IAA) at 0.5, 1.0, 1.5, 2.0 mgL-1 was used for rooting. In all experiments, PGR-free treatments were included as a control. There were no differences between the disinfection treatments and high explants survival percentage (> 80%), and reduced contamination (< 12%) were observed. In the multiplication, BAP (0.5-2.0 mgL-1) and GA3 (0.5 mgL-1) induced a higher number of axillary buds per explant, but combinations of both PGR did not gain better results. However, BAP (0.5-2.0 mgL-1) reduced areal part length, and GA3 or GA3 + BAP did not affect aerial plant length. For rooting, the indole-acetic acid (IAA) increased the number of roots achieving better results at 2.0 mgL-1, also this IAA concentration did not negatively affect the aerial growth. This is the first report about BAP, GA3, and IAA effects during in vitro growth and development of S. curtilobum. It could be useful to approach methodologies for its conservation by micropropagation and other future genetic research, where in vitro culture will be required.
Keywords: micropropagation; plant growth regulators; plants; shoots; tissue culture
Citation: Tolentino-Dextre, E., Macedo-Ballico, A., Tamariz-Angeles, C. & Olivera-Gonzales, P. (2025). Effects of plant growth regulators on in vitro propagation of Solanum curtilobum, a threatened bitter potato. Bulg. J. Agric. Sci., 31(4), 690–696.
References: (click to open/close) | Ali, S., Khan, N., Nouroz, F., Erum, S., Nasim, W. & Shahid, M. A. (2018). In vitro effects of GA3 on morphogenesis of CIP potato explants and acclimatization of plantlets in field. In Vitro Cellular and Developmental Biology - Plant, 54(1), 104 - 111. https://doi.org/10.1007/s11627-017-9874-x. Brown, C. R. (1999). A native American technology transfer: The diffusion of potato. HortScience, 34(5), 817 - 821. https://doi.org/10.21273/hortsci.34.5.817. de Haan, S., Palomino, A. T., Cóndor, A. R., Salazar, R. N. Y. de, Portillo, Z., Bendezú, G. R. Q. & Coca, C. G. (2006). Catalog of native potato varieties from Huancavelica - Perú. In: Centro Internacional de la Papa (CIP). https://doi.org/https://hdl.handle.net/10568/101328. de Haan, S., Burgos, G., Arcos, J., Ccanto, R., Scurrah, M., Salas, E. & Bonierbale, M. (2010). Traditional Processing of Black and White Chuño in the Peruvian Andes: Regional Variants and Effect on the Mineral Content of Native Potato Cultivars. Economic Botany, 64, 217 - 234. https://doi.org/10.1007/s12231-010-9128-x. de Haan, S. & Rodriguez, F. (2016). Potato Origin and Production. In: J. Singh & L. Kaur (Eds.), Advances in Potato Chemistry and Technology: Second Edition (Second Edi, pp. 1–32). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800002-1.00001-7. de Morais, T. P., Asmar, S. A., Silva, H. F. de J., Luz, J. M. Q. & de Melo, B. (2018). Application of tissue culture techniques in Potato. Bioscience Journal, 34(4), 952 - 969. https://doi.org/10.14393/BJ-v34n1a2018-38775. Fonseca, C., Burgos, G., Rodríguez, F., Muñoa, L. & Ordinola, M. (2014). Catalog of native potato varieties with potential for food and nutritional security in Apurimac and Huancavelica (CIP). https://doi.org/10.4160/9789290604549. Gavrilenko, T., Antonova, O., Shuvalova, A., Krylova, E., Alpatyeva, N., Spooner, D. M. & Novikova, L. (2013). Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution, 60(7), 1997 - 2015. https://doi.org/10.1007/s10722-013-9968-1. Ghaffoor, A., Shah, G. B. & Waseem, K. (2003). In vitro Response of Potato (Solanum tuberosum L.) to Various Growth regulators. Biotechnology, 2(3), 191 - 197. https://doi.org/10.3923/biotech.2003.191.197. Gonin, M., Bergougnoux, V., Nguyen, T. D., Gantet, P. & Champion, A. (2019). What makes adventitious roots? Plants, 8(7), 1 - 24. https://doi.org/10.3390/plants8070240. Hijmans, R. J., Jacobs, M., Bamberg, J. B. & Spooner, D. M. (2003). Frost tolerance in wild potato species: Assessing the predictivity of taxonomic, geographic, and ecological factors. Euphytica, 130(1), 47 - 59. https://doi.org/10.1023/A:1022344327669. Jiménez, E., Yépez, A., Pérez-Cataluña, A., Ramos Vásquez, E., Zúñiga Dávila, D., Vignolo, G. & Aznar, R. (2018). Exploring diversity and biotechnological potential of lactic acid bacteria from tocosh - traditional Peruvian fermented potatoes - by high throughput sequencing (HTS) and culturing. LWT - Food Science and Technology, 87, 567 - 574. https://doi.org/10.1016/j.lwt.2017.09.033. Kondhare, K. R., Patil, A. B. & Giri, A. P. (2021). Auxin: An emerging regulator of tuber and storage root development. Plant Science, 306, 110854. https://doi.org/10.1016/j.plantsci.2021.110854. Kozukue, N., Yoon, K. S., Byun, G. I. N., Misoo, S., Levin, C. E. & Friedman, M. (2008). Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. Journal of Agricultural and Food Chemistry, 56(24), 11920 - 11928. https://doi.org/10.1021/jf802631t. Kumlay, A. M. (2014). Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions. BioMed Research International. https://doi.org/10.1155/2014/439259. Masood, A., Khan, M. I. R., Fatma, M., Asgher, M., Per, T. S. & Khan, N. A. (2016). Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiology and Biochemistry, 104, 1 - 10. https://doi.org/10.1016/j.plaphy.2016.03.017. Megrelishvili, I., Bulauri, E., Chipashvili, T. & Kukhaleishvili, M. (2016). Auxin and Cytokine Treatment Effect in Combination With Sucrose on in vitro Potato Regeneration. International Journal of Advanced Research, 4(8), 118 - 122. https://doi.org/10.21474/ijar01/1192. Naheed, A., Muhammad, M., Hussain, M. & Mahmood, M. (2006). Sterile shoot production and direct regeneration from the nodal explants of potato cultivars. Asian Journal of Plant Sciences, 5(5), 885 - 889. https://doi.org/10.3923/ajps.2006.885.889. Ochoa, C. (2001). Potatoes of South America: Bolivia. French Institute of Andean Studies (IFEA). Plíhalová, L., Vylíčilová, H., Doležal, K., Zahajská, L., Zatloukal, M. & Strnad, M. (2016). Synthesis of aromatic cytokinins for plant biotechnology. New Biotechnology, 33(5), 614 - 624. https://doi.org/10.1016/j.nbt.2015.11.009. Rawat, T. S., Krishnaprasad, B. T. & Anil, V. S. (2017). Direct and Indirect Regeneration of Potato Cultivar Kufri Jyoti. 3(4), 31 - 34. https://doi.org/10.9790/264X-03043134. Rout, B. M., Bhatia, A. K. Ǥ, Singh, T., Chandel, R. & Kumar, V. (2022). Cultured plants in potato (Solanum tuberosum L.) Kufri Lima, 1 - 10. https://doi.org/10.17660/eJHS.2022. Xhulaj, D. & Gixhari, B. (2018). In vitro micropropagation of potato (Solanum tuberosum L). cultivars. Agriculture and Forestry, 64(4), 105 - 112. https://doi.org/10.17707/agricultforest.64.4.12. Yoshikawa, K. & Apaza, F. (2020). Unfrozen state by the supercooling of chuno for traditional agriculture in altiplano andes. Environmental and Sustainability Indicators, 8(September), 1 - 4. https://doi.org/10.1016/j.indic.2020.100063. Zhang, Z., Zhou, W. & Li, H. (2005). The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Acta Physiologiae Plantarum, 27(3), 363 - 369. https://doi.org/10.1007/s11738-005-0013-7. Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61, 49 - 64. https://doi.org/10.1146/annurev-arplant-042809-112308. |
|
| Date published: 2025-08-27
Download full text