Behavior of the natural arbuscular mycorrhiza of oil-bearing rose under the influence of organic fertilization
Rumyana Georgieva

Abstract: The present study aims to identify the composition of the natural arbuscular mycorrhizal society of Damask rose, and to investigate if the different organic fertilization products influence its colonization rate. The present research also investigated the density of the mycorrhizal community during the plant's crucial growth stages. The experiment was carried out using the randomized complete block design, in three replications over three years (2022, 2023, and 2024). The following organic fertilizers were used in the experiment: dried poultry manure, Polynamatura NP, OrgaNexport N:P 10:8, and vermicompost, each applied at the respective dose. For the test period, the two factors - organic fertilization and climate conditions, do not lead to significant changes in the composition of the natural mycorrhizal society. The species affiliation of 9 arbuscular mycorrhizal fungi was identified. Spores of Claroideoglomus claroideum, Glomus irregulare, Funneliformis caledonius, and Funneliformis mosseae were detected at the highest frequency. The density of the mycorrhizal community varies, throughout the different stages of rose development. The highest density is observed during the flowering phase, when the plants have the greatest nutrient demands. In contrast, the leaf occurrence phase is associated with the lowest density of the arbuscular mycorrhizal community. Fertilization with bone meal stimulates the density of mycorrhiza to the greatest extent for the entire testing period. During the flowering phase, fertilization with meat and bone meal increases the colonization rate between 28.3% for the second year and 32.6% for the third year. As a result of fertilization with vermicompost, the percentage of colonization increases between 8.5% for the second year and 16.9% for the first year. A similar effect is exerted by fertilizing with dried poultry manure. The control variants report the lowest values for the indicator. In years with better precipitation, such as 2023 and 2024, a higher percentage of colonization and an increased density of spores are reported.
Keywords: Damasc rose; fertilization; mycorrhiza colonization; organic production
Citation: Georgieva, R. (2025). Behavior of the natural arbuscular mycorrhiza of oil-bearing rose under the influence of organic fertilization. Bulg. J. Agric. Sci., 31(4), 681–689.
References: (click to open/close) | Abdel-Salam, E., Alatar, A. & El-Sheikh, M. A. (2018). Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences, 25(8), 1772 - 1780. https://doi.org/10.1016/j.sjbs.2017.10.015. Augé, R. M., Schekel, K. A. & Wample, R. L. (1986). Greater leaf conductance of well‐watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytologist, 103(1), 107 - 116. https://doi.org/10.1111/j.1469-8137.1986.tb00600.x. Betancur-Agudelo, M., Meyer, E. & Lovato, P. E. (2021). Arbuscular mycorrhizal fungus richness in the soil and root colonization in vineyards of different ages. Rhizosphere, 17, 100307. https://doi.org/10.1016/j.rhisph.2021.100307. Bezemer, T. M., Lawson, C. S., Hedlund, K., Edwards, A. R., Brook, A. J., Igual, J. M., Mortimer, S. R. & Van Der Putten, W. H. (2006). Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. Journal of Ecology, 94(5), 893 - 904. https://doi.org/10.1111/j.1365-2745.2006.01158.x. Cameron, D. D. (2010). Arbuscular mycorrhizal fungi as (agro) ecosystem engineers. Plant and Soil, 333, 1 - 5. Ceccarelli, N., Curadi, M., Martelloni, L., Sbrana, C., Picciarelli, P. & Giovannetti, M. (2010). Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant and Soil, 335, 311 - 323. Copetta, A., Lingua, G. & Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16, 485 - 494. doi: 10.1007/s00572-006-0065-6. Douds, Jr. D. D., Galvez, L., Janke, R. R. & Wagoner, P. (1995). Effect of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agriculture, Ecosystems & Environment, 52(2-3), 111 - 118. https://doi.org/10.1016/0167-8809(94)00550-X. Duan, T., Shen, Y., Facelli, E., Smith, S. E. & Nan, Z. (2010). New agricultural practices in the Loess Plateau of China do not reduce colonisation by arbuscular mycorrhizal or root invading fungi and do not carry a yield penalty. Plant and Soil, 331, 265 - 275. Entz, M. H., Penner, K. R., Vessey, J. K., Zelmer, C. D. & Thiessen Martens, J. R. (2004). Mycorrhizal colonization of flax under long-term organic and conventional management. Canadian Journal of Plant Science, 84(4), 1097 - 1099. doi: 10.4141/P04-055. Franke-Snyder, M., Douds Jr. D. D., Galvez, L., Phillips, J. G., Wagoner, P., Drinkwater, L. & Morton, J. B. (2001). Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Applied Soil Ecology, 16(1), 35 - 48. https://doi.org/10.1016/S0929-1393(00)00100-1 Georgieva, R., Steinkellner, S., Manolov, I., Pangilinan, P. J. M. & Desmond, K. S. (2024). Effect of organic pest control products on Arbuscular Mycorrhizal colonization in Bulgarian rose plantations: A two-year field study. Eurasian Journal of Soil Science, 13(2), 161 - 166. Gerdemann, J. W. & Nicolson, T. H. (1963). Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc., 46, 235 - 244. https://doi.org/10.1016/S0007-1536(63)80079-0. Gianinazzi, S., Gollotte, A., Binet, M. N., van Tuinen, D., Redecker, D. & Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519 - 530. doi: 10.1007/s00572-010-0333-3. Giovannetti, M. & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 489 - 500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x. Gollner, M. (2003). Effects of agricultural and crop management measures, as well as the duration of organic farming on arbuscular mycorrhiza in organic farming. Doctoral dissertation, University of Natural Resources and Life Sciences, Vienna. (Ge). GOST 26208-91 (1993). Soils. Determination of mobile compounds of phosphorus and potassium by Egner-Riem-Domingo method (AL-method). Moscow, Standards Publishing House, 7 (Ru). Goyal, K., Singh, N., Jindal, S., Kaur, R., Goyal, A. & Awasthi, R. (2022). Kjeldahl Method. Advanced Techniques of Analytical Chemistry, 1(1), 105. Hodge, A., Helgason, T. & Fitter, A. H. (2010). Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 3(4), 267 - 273. https://doi.org/10.1016/j.funeco.2010.02.002. Ianson, D. C. & Allen, M. F. (1986). The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia, 78(2), 164 - 168. doi:10.1080/00275514.1986.12025227. Jansa, J., Mozafar, A., Anken, T., Ruh, R., Sanders, I. & Frossard, E. (2002). Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza, 12, 225 - 234. doi: 10.1007/s00572-002-0163-z. Kapoor, R., Chaudhary, V. & Bhatnagar, A. K. (2007). Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza, 17, 581 - 587. doi: 10.1007/s00572-007-0135-4. Likar, M., Stres, B., Rusjan, D., Potisek, M. & Regvar, M. (2017). Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Applied Soil Ecology, 113, 86 - 95. https://doi.org/10.1016/j.apsoil.2017.02.007. Lucas García, J. A., Barbas, C., Probanza, A., Barrientos, M. L. & Gutierrez Mañero, F. J. (2001). Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 12(5), 305 - 311. https://doi.org/10.1002/pca.596 Møller, K., Kristensen, K., Yohalem, D. & Larsen, J. (2009). Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biological Control, 49(2), 120 - 125. Newman, E. I. (1966). A method of estimating the total length of root in a sample. Journal of Applied Ecology, 139 - 145. doi: 10.2307/2401670. Oehl, F., Sieverding, E., Ineichen, K., Mäder, P., Boller, T. & Wiemken, A. (2003). Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and environmental microbiology, 69(5), 2816 - 2824. doi: 10.1128/AEM.69.5.2816-2824.2003. Oehl, F., Sieverding, E., Mäder, P., Dubois, D., Ineichen, K., Boller, T. & Wiemken, A. (2004). Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia, 138, 574 - 583. doi: 10.1007/s00442-003-1458-2. Panja, B. N. & Chaudhuri, S. (2004). Exploitation of soil arbuscular mycorrhizal potential for AM-dependent mandarin orange plants by pre-cropping with mycotrophic crops. Applied Soil Ecology, 26(3), 249 - 255. https://doi.org/10.1016/j.apsoil.2003.12.007. Payal Mago, P. M. & Mukerji, K. G. (1994). Vesicular arbuscular mycorrhizae in Lamiaceae. I. Seasonal Variation in Some Members. Phytomorphology, 44, 83 - 88. Pérez-Bejarano, A., Mataix-Solera, J., Zornoza, R., Guerrero, C., Arcenegui, V., Mataix-Beneyto, J. & Cano-Amat, S. (2010). Influence of plant species on physical, chemical and biological soil properties in a Mediterranean forest soil. European Journal of Forest Research, 129, 15 - 24. Raviv, M. (2010). The use of mycorrhiza in organically-grown crops under semi arid conditions: a review of benefits, constraints and future challenges. Symbiosis, 52(2), 65 - 74. doi: 10.1007/s13199-010-0089-8. Ryan, M. & Ash, J. (1999). Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic). Agriculture, Ecosystems & Environment, 73(1), 51 - 62. https://doi.org/10.1016/S0167-8809(99)00014-6. Sivakumar, N. (2013). Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Annals of Microbiology, 63, 151 - 160. doi: 10.1007/s13213-012-0455-2. Slepetiene, A., Ceseviciene, J., Amaleviciute-Volunge, K., Mankeviciene, A., Parasotas, I., Skersiene, A., Jurgutis, L., Volungevicius, J., Veteikis, D. & Mockeviciene, I. (2023). Solid and liquid phases of anaerobic digestate for sustainable use of agricultural soil. Sustainability, 15(2), 1345. https://doi.org/10.3390/su15021345. Smith, S. E. & Read, D. J. (2010). Mycorrhizal Symbiosis. Academic Press.Oxford, UK, 13-32. St John, T. V. & Koske, R. E. (1988). Statistical Treatment of Endogonaceous Spore Counts. Cambridge University Press, London, 117-121. https://doi.org/10.1016/S0007-1536(88)80012-3. Todorova, M., Grozeva, N., Gerdzhikova, M., Dobreva, A. & Terzieva, S. (2020). Productivity of oil-bearing roses under organic and conventional systems. Scientific Papers of University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania, Series A, Agronomy, LXIII(1), 580 – 585. Toussaint, J. P., Smith, F. A. & Smith, S. E. (2007). Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza, 17, 291 - 297. doi: 10.1007/s00572-006-0104-3. Trendafilov, K. & Popova, R. (2007). Guidance for Exercise of Soil Science. Publishing House of Agricultural University of Plovdiv, 7-15 (Bg). Troeh, Z. I. & Loynachan, T. E. (2003). Endomycorrhizal fungal survival in continuous corn, soybean, and fallow. Agronomy Journal, 95(1), 224 - 230. https://doi.org/10.2134/agronj2003.2240. Vestberg, M., Saari, K., Kukkonen, S. & Hurme, T. (2005). Mycotrophy of crops in rotation and soil amendment with peat influence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field soil. Mycorrhiza, 15, 447 - 458. doi: 10.1007/s00572-005-0349-2. Vierheilig, H., Coughlan, A. P., Wyss, U. R. S. & Piché, Y. (1998). Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology, 64(12), 5004 - 5007. https://doi.org/10.1128/AEM.64.12.5004-5007.1998. Wagg, C., Bender, S. F., Widmer, F. & Van Der Heijden, M. G. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111(14), 5266 - 5270. doi: 10.1073/pnas.1320054111. Walker, C. H. R. I. S. T. O. P. H. E. R & Sanders, F. E. (1986). Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. & Trappe. Mycotaxon 27, 169-182. Zaller, J. G., Cantelmo, C., Santos, G. D., Muther, S., Gruber, E., Pallua, P., Mandl, K., Friedrich, B., Hofstetter, I., Schmuckenschlager, B. & Faber, F. (2018). Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. Environmental Science and Pollution Research, 25, 23215 - 23226. https://doi.org/10.1007/s11356-018-2422-3. Zhang, Y., Guo, L. D. & Liu, R. J. (2004). Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant and Soil, 261(1), 257 - 263. Zubek, S., Błaszkowski, J., Delimat, A. & Turnau, K. (2009). Arbuscular mycorrhizal and dark septate endophyte colonization along altitudinal gradients in the Tatra Mountains. Arctic, Antarctic, and Alpine Research, 41(2), 272 - 279. doi: 10.1657/1938-4246-41.2.272. Zubek, S., Stojakowska, A., Anielska, T. & Turnau, K. (2010). Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza, 20, 497 - 504. doi: 10.1007/s00572-010-0306-6. Zubek, S., Stefanowicz, A. M., Błaszkowski, J., Niklińska, M. & Seidler-Łożykowska, K. (2012). Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants. Applied Soil Ecology, 59, 106 - 115. https://doi.org/10.1016/j.apsoil.2012.04.008. Zubek, S., Błaszkowski, J., Seidler-Łożykowska, K., Bąba, W. & Mleczko, P. (2013). Arbuscular mycorrhizal fungi abundance, species richness and composition under the monocultures of five medicinal plants. Acta Scientiarum Polonorum. Hortorum Cultus, 12(5). |
|
| Date published: 2025-08-27
Download full text