Some body variables and their relationships in blue-breasted quail Synoicus chinensis
Arzu Üçtepe

Abstract: Blue-breasted quail (Synoicus chinensis, formerly Coturnix chinensis or Excalfactoria chinensis), has recently been defined as a good animal model for research in developmental biology, genetics, reproduction, behavior, and immunology due to its advantages, such as ease of handling, robustness, high egg-laying performance, observation of parthenogenesis, and short generation. The aim of this study was to determine body variables such as live weight, length of total body, length of exposed culmen, length of culmen without cere, windth of bill from the front of the cere, width of bill at gape, length of head, width of head, heigth of eye, length of closed wing, length of tarsus, length of middle toe, length of hallux and investigate the relationships between body variables and identify the most influential variable(s) causing the observed in blue-breasted quail. A total of 96 blue-breasted quails at 65-67 days of age were used. Live weight (P=0.000), length of total body (P=0.004), heigth of eye (P=0.000) and length of closed wing (P=0.004) were higher in females, while length of exposed culmen (P=0.008) was higher in males. The remaining other body variables were not fount to be statistically different between sexes (P>0.05). The correlation coefficients between some body variables in the two sexes were significant. A number of negative correlations were found to be significant for females (P<0.05), while none of them were found to be significant for males. (P>0.05). First two principal components accounted for 94.6% and 78.3% of the total variance in females and males, respectively, and the most effective variable in both genders was live weight. This study could be a source that will pave the way for future studies on the blue-breasted quail, which has recently been the subject of several studies because of its many variables, and which has not yet been selectively bred.
Keywords: body variable; Chinese painted quail; correlation; principal component
Citation: Üçtepe. A. (2025). Some body variables and their relationships in blue-breasted quail Synoicus chinensis. Bulg. J. Agric. Sci., 31(3), 576–584.
References: (click to open/close) | Adkins-Regan, E. (2016). Pairing behavior of the monogamous king quail, Coturnix chinensis. PLoS One, 11(6), e0155877. doi: 10.1371/journal.pone.0155877. PMID: 27257681; PMCID: PMC4892625. Ajayi, O. O., Yakubu, A., Jayeola, O. O., Imumorin, I. G., Takeet, M. I., Ozoje, M. O., Ikeobi, C. O. & Peters, S. O. (2012). Multivariate analysis of sexual size dimorphism in local turkeys (Meleagris gallopavo) in Nigeria. Tropical Animal Health and Production, 44(5), 1089-1095, doi: 10.1007/s11250-011-0044-6. Epub 2011 Dec 30. PMID: 22205223. Akumbugu, F. E., Obakpa, M. U., Ebuga, A. V. & Esson, T. S. (2020). Effect of sex on biometry and morphological indices of Japanese quails (Coturnix coturnix japonica). Biotechnology in Animal Husbandry, 36(1), 37-47. doi: 10.2298/BAH2001037F. Araguas, R. M., Sanz, N., Viñas, J. & Vidal, O. (2018). MC 1R polymorphism associated with plumage color variations in Coturnix chinensis. Animal Genetics, 49(5), 475-477. doi:10.1111/age.12679. Askew, G. N., Marsh, R. L. & Ellington, C. P. (2001). The mechanical power output of the flight muscles of blue-breasted quail (Coturnix chinensis) during take-off. Journal of Experimental Biology, 204(21), 3601-3619. doi:10.1242/jeb.204.21.3601. Atasoy, F., Erdem, E. & Hacan, Ö. G. (2013). Ankara İlinde yetiştirilen taklacı güvercinlerde (Columba livia domestica) morfolojik özelliklerin belirlenmesi. Ankara Üniv. Vet. Fak. Derg., 60, 135-143. Baldwin, S. P., Oberholser, H. C. & Worley, L. G. (1931). Measurements of birds. Sci. Publ. Clev. Mus. Nat. Hist., 2, 1–165. Bernstein, M. H. (1973). Development of thermoregulation in painted quail, Excalfactoria chinensis. Comparative Biochemistry and Physiology Part A: Physiology, 44(2), 355-366. doi: 10.1016/0300-9629(73)90488-x. PMID: 4145755. Cai, J. H., Yeh, T. F., Wei, H. W. & Liu, I. H. (2019). Temperature-induced embryonic diapause in blue-breasted quail (Coturnix chinensis) correlates with decreased mitochondrial-respiratory network and increased stress-response network. Poultry Science, 98(7), 2977-2988. doi: 10.3382/ps/pez116. PMID: 30915476. Dudusola, I. O., Adeyemi, E. A. & Oyeromi, O. F. (2018). Prediction of body weight from linear body measurements in Japanese quail. Nigerian Journal of Animal Production, 45(4), 9-15. doi: 10.51791/njap.v45i4.544. Dzubin, A. & Cooch, E. (1992). Measurements of geese. General Field Methods. California Waterfowl Association, Sacramento, California, 20. Egena, S. S. A., Ijaiya, A. T., Ogah, D. M. & Aya, V. E. (2014). Principal component analysis of body measurements in a population of indigenous Nigerian chickens raised under extensive management system. Slovak Journal of Animal Science, 47(2), 77-82, ISSN 1337-9984. Ferrer, M. & de le Court, C. (1992). Sex identification in the Spanish imperial eagle (Identificacíon del Sexo en Aguila adalberti). Journal of Field Ornithology, 63(3), 359–364. http://www.jstor.org/stable/4513720. Harper, D. (1986). Pet Birds for Home and Garden. London, Salamander Books Ltd. Hickman, A. R. (1981). A study on the function of foam from the proctodeal gland of the male japenes quails (Coturnix coturnix japonica) with respect to its effects on sperm competiton. Thesis degree of Master of Science. The University of British Columbia, 63. Ibrahim, N. S., El-Sayed, M. A., Assi, H. A. M., Enab, A. & Abdel-Moneim, E. A. M. (2021). Genetic and physiological variation in two strains of Japanese quail. Journal of Genetic Engineering and Biotechnology, 19(1), 15. doi:10.1186/s43141-020-00100-3. Johnsgard, P. (1988). The quail, partridges, and francolins of the world. Oxford: Oxford University Press. New York, USA. Kageyama, M., Takenouchi, A., Kinoshita, K., Nakamura, Y. & Tsudzuki, M. (2018). The “extended brown” plumage color mutant of blue-breasted quail (Coturnix chinensis) is associated with a mutation in the Melanocortin 1-Receptor gene (MC1R). The Journal of Poultry Science, 55(4), 233-238. doi:10.2141/jpsa.0180006. King, M. (1970). Mitotic chromosomes of the Australian king quail (Excalfactoria chinensis). Caryologia 23(3), 329–334. doi:10.1080/00087114.1970.10796375. Landry, G. P. & Rogers, C. (1977). The care, breeding, and genetics of the button quail by Garrie P. Andry with the Assistance of Chris Rogers, © 1977 Poule D'eau Publishing. Mateos, C. (1998). Sexual selection in the ring-necked pheasant: a review. Ethology, Ecology & Evolution, 10(4), 313-332. doi:10.1080/08927014.1998.9522846. Minitab 21 Statistical Software (2021). [Computer software]. State College, PA: Minitab, Inc. (www.minitab.com). Nakamura, Y., Nakane, Y. & Tsudzuki, M. (2019a). Skeletal development in blue‐breasted quail embryos. Animal Science Journal, 90(3), 353-365. doi:10.1111/asj.13159. Nakamura, Y., Nakane, Y. & Tsudzuki, M. (2019b). Developmental stages of the blue‐breasted quail (Coturnix chinensis). Animal Science Journal, 90(1), 35-48. doi: 10.1111/asj.13119. Naskar, A., Alam, I., Majumder, A. & Maheswaran, G. (2022). Recently resighted population of Blue-breasted quail (Synoicus chinensis) in and around East Kolkata Wetland is under threat due to development activities. Records of the Zoological Survey of India, 121(4), 527-535. doi: 10.26515/rzsi/v121/i4/2021/155004. Negash, F. (2021). Application of principal component analysis for predicting body weight of Ethiopian indigenous chicken populations. Tropical Animal Health and Production, 53(1), 104. doi:10.1007/s11250-020-02526-w. Nishibori, M., Tsudzuki, M., Hayashi, T., Yamamoto, Y. & Yasue, H. (2002). Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondorial genome and a phylogenetic analysis with related species. Journal of Heredity, 93(6), 439-444. doi:10.1093/jhered/93.6.439. Oguntunji, A. O. & Ayorinde, K. L. (2014). Sexual size dimorphism and sex determination by morphometric measurements in locally adapted Muscovy duck (Cairina moschata) in Nigeria. Acta Argiculturae Slovenica,104(1), 15–24. doi:10.14720/aas.2014.104.1.2. Oğrak, Y. Z., Özbilgin, A., Gümüş, R. & Uroå, M. (2021). Determination of body weight and zoometric structures of Japanese Quail (Coturnix coturnix japonica) according to white and brown varieties. Turkish Journal of Agriculture-Food Science and Technology, 9(11), 2035-204. doi:10.24925/turjaf.v9i11.2035-2040.4715. Ono, T., Nakane, Y., Wadayama, T., Tsudzuki, M., Arisawa, K., Ninomiya, S., Suzuki, T., Mizutani, M. & Kagami, H. (2005). Culture system for embryos of blue-breasted quail from the blastoderm stage to hatching. Exp. Anim.,54(1), 7-11. doi: 10.1538/expanim.54.7. Parés-Casanova, P. M. (2014). An analysis of sexual size dimorphism in goose. British Poultry Science, 55(2), 143-147. doi:10.1080/00071668.2014.889282. Parker, H. M. & McDaniel, C. D. (2009). Parthenogenesis in unfertilized eggs of Coturnix chinensis, the Chinese painted quail, and the effect of egg clutch position on embryonic development. Poultry Science, 88(4), 784-790. doi:10.3382/ps.2008-00368. Parker, H. M., Kiess, A. S., Wells, J. B., Young, K. M., Rowe, D. & McDaniel, C. D. (2010). Genetic selection increases parthenogenesis in Chinese painted quail (Coturnix chinensis). Poultry Science, 89(7), 1468-1472. doi:10.3382/ps.2009-00388. Pearson, J. T., Tsudzuki, M., Nakane, Y., Akiyama, R. & Tazawa, H. (1998). Development of heart rate in the precocial king quail Coturnix chinensis. The Journal of Experimental Biology, 201(7), 931-941. doi:10.1242/jeb.201.7.931. Pis, T. & Luśnia, D. (2005). Growth rate and thermoregulation in reared king quails (Coturnix chinensis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140(1), 101-109. doi:10.1016/j.cbpb.2004.11.008. Remeš, V. & Székely, T. (2010). Domestic chickens defy Rensch’s rule: sexual size dimorphism in chicken breeds. Journal of Evolutionary Biology, 23(12), 2754-2759, doi:10.1111/j.1420-9101.2010.02126.x. Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303-304. doi:10.1038/nbt0308-303. Sarkadi, J., Jankovics, M., Kis, Z., Skare, J., Fodor, K., Gonczol, E., Visontai, I., Vajo, Z. & Jankovics, I. (2013). Protection of Chinese painted quails (Coturnix chinensis) against a highly pathogenic H5N1 avian influenza virus strain after vaccination. Archives of Virology, 158(12), 2577–2581. doi:10.1007/s00705-013-1754-z. Savaş, T. & Erdem, H. (2022). Sexual dimorphism in body size and some exterior traits of pigeon breed groups. Journal of Poultry Research, 19(2), 68-77. doi:10.34233/jpr.1219731. Schleidt, W. M., Yakalis, G., Donnelly, M. & McGarry, J. (1984). A proposal for a standard ethogram, exemplified by an ethogram of the bluebreasted quail (Coturnix chinensis) 1. Zeitschrift für Tierpsychologie, 64(3‐4), 193-220. doi: 10.1111/j.1439-0310.1984.tb00360.x. Sefton, A. E. & Siegel, P. B. (1974). Inheritance of body weight in Japanese quail. Poultry Science, 53(4), 1597-1603. doi: 10.3382/ps.0531597. Selvan, S. T., Sivaselvam, S. N. & Thyagarajan, D. (2013). Sexual dimorphism, egg laying and egg weight in ostriches (Struthio camelus) reared under Indian conditions. Indian J.Anim.Res. 47(5), 426–430. Print ISSN: 0367-6722. Online ISSN : 0976-0555. Shibusawa, M., Nishida-Umehara, C., Tsudzuki, M., Masabanda, J., Griffin, D. K. & Matsuda, Y. (2004). A comparative karyological study of the blue-breasted quail (Coturnix chinensis, Phasianidae) and California quail (Callipepla californica, Odontophoridae). Cytogenetic and Genome Research, 106(1), 82-90. doi: 10.1159/000078569. Stewart, I. F. (1963). Variation of wing length with age. Bird Study, 10(1), 1-9. doi: 10.1080/00063656309476036. Tsudzuki, M. (1994). Excalfactoria quail as a new laboratory research animal. Poultry Science, 73(6), 763–768. doi: 10.3382/ps.0730763. Tsudzuki, M. (1995a). Light gray: A plumage color mutation of Chinese painted quail (Excalfactoria chinensis). Journal of Heredity, 86(1), 68–70. doi: 10.1093/oxfordjournals.jhered.a111531. Tsudzuki, M. (1995b). Brown: A plumage color mutation in Chinese painted quail (Excalfactoria chinensis). Journal of Heredity, 86(4), 307–309. doi: 10.1093/oxfordjournals.jhered.a111589. van Grouw, H. (2017). The dark side of birds: melanism—facts and fiction. Bulletin of the British Ornithologists’ Club, 137(1), 12-36. doi: 10.25226/bboc.v137i1.2017.a9. Wei, H. W., Hsieh, T. L., Chang, S. K., Chiu, W. Z., Huang, Y. C. & Lin, M. F. (2011a). Apportioning protein requirements for maintenance v. growth for blue-breasted quail (Excalfactoria chinensis) from 7 to 21 days of age. Animal, 5(10), 1515-1520. doi:10.1017/S1751731111000590. Wei, H. W., Hsieh, T. L., Chang, S. K., Chiu, W. Z., Huang, Y. C. & Lin, M. F. (2011b). Estimating the requirement of dietary crude protein for growing blue-breasted quail (Excalfactoria chinensis). Animal, 5(10), 1506-1514. doi:10.1017/S1751731111000589. Williamson, S.A., Jones, S.K.C. & Munn, A.J. (2014). Is gastrointestinal plasticity in king quail (Coturnix chinensis) elicited by diet-fibre or diet-energy dilution? Journal of Experimental Biology, 217(11), 1839-1842. doi:10.1242/jeb.102418 Willemsen, H., Everaert, N., Witters, A., De Smit, L., Debonne, M., Verschuere, F., Garain, P., Berckmans, D., Decuypere, E. & Bruggeman, V. (2008). Critical assessment of chick quality measurements as an indicator of posthatch performance. Poultry Science, 87(11), 2358-2366. doi:10.3382/ps.2008-00095. Yakubu, A., Kuje, D. & Okpeku, M. (2009). Principal components as measures of size and shape in Nigerian indigenous chickens. Thai Journal of Agricultural Science, 42(3), 167-176. Yakubu, A. & Ari, M. M. (2018). Principal component and discriminant analyses of body weight and conformation traits of Sasso, Kuroiler and indigenous Fulani chickens in Nigeria. J. Anim. Plant Sci., 28(1), 46–55. Yiğit, A. (2021a). Modelling of egg weight and size in blue-breasted quails (Excalfactoria chinensis). III International and XII National Animal Science Conference 27-28 November 2021, Bursa, Turkey, 261-267. Yiğit, A. (2021b). The relationships between some egg traits and sex in blue-breasted quails (Excalfactoria chinensis). V. International Congress on Domestic Animal Breeding, Genetics and Husbandry - 2021 (ICABGEH-21), September 27, Odessa, Ukraine (Online), 13-18. Yiğit, A. (2022). The relationships between some egg characteristics by different flock ages in Coturnix chinensis. The Chinese Painted Quail, 278. VI. International Congress on Domestic Animal Breeding, Genetics and Husbandry - 2022 (ICABGEH-22) October 03 - 05, 2022 – Samsun, Türkiye. |
|
| Date published: 2025-06-24
Download full text