Evaluation nanoparticles of metals and metal oxides for antifungal effect on Verticillium dahliae
Katya Vasileva

, Zhana Ivanova, Veneta Stoeva
Abstract: The soil-borne fungus Verticillium dahliae is the causal agent of wilting disease and affects a wide range of plant species worldwide. Soil borne pathogens are significant contributors to plant yield loss globally. The constraints in early diagnosis, wide host range, longer persistence in soil makes their management cumbersome and difficult. The aim of this study is to evaluate the nanoparticles that have demonstrated activity in suppressing mycelia growth of Verticillium dahliae. The limiting effect on mycelial growth at a dose of 0.5 mg/l of the tested products against Verticillium dahliae was reported for Zinc with a particle size of 60-70 nm and 790 nm. A good effect for both isolates was reported with Zinc 18 nm, Mg micro powder 35 µm and Mg oxide 18 nm. The average tested nanoparticle concentration of 1.5 mg/l, the best limiting effect was observed for Zinc with a particle size of 60-70 nm during the entire reporting period. The high concentration (2.5 mg/l) of the products showed a high inhibitory effect on both tested isolates of the pathogen. A very good limiting effect is reported for almost all materials in the (3 - 12-day) reporting period.
Keywords: in vitro; nanoparticles; test; Verticillium dahliae
Citation: Vasileva, K., Ivanova, Zh. & Stoeva, V. (2025). Evaluation nanoparticles of metals and metal oxides for antifungal effect on Verticillium dahliae. Bulg. J. Agric. Sci., 31(3), 475–481.
References: (click to open/close) | Acharya, B., Ingram, T. W., Oh, Y., Adhikari, T. B., Dean, R. A. & Louws, F. J. (2020). Opportunities and challenges in studies of host-pathogen interactions and management of Verticillium dahliae in tomatoes. Plants, 9(11), 1622. https://doi.org/10.3390/plants9111622. Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L. & White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science: Nano, 6(7), 2002 – 2030.https://doi.org/10.1039/C9EN00265K. Batzer, J. C., Gleason, M. L., Harrington, T. C. & Tiffany, L. H. (2005). Expansion of the sooty blotch and flyspeck complex on apples based on analysis of ribosomal DNA gene sequences and morphology. Mycologia, 97(6), 1268 – 1286. https://doi.org/10.1080/15572536.2006.11832735. De Mendiburu, F. (2015). Agricolae tutorial version 1.2-2. Statistics and Informatics. Department of Economic Faculty of National University of Agriculture Molina, Peru, 78. Dutta, P., Kumari, A., Mahanta, M., Upamanya, G. K., Heisnam, P., Borua, S., Kaman, P. K., Mishra, A. K., Mallik, M. & Muthukrishnan, G. (2023). Nanotechnological approaches for management of soil-borne plant pathogens. Frontiers in Plant Science, 14, 1136233. https://doi.org/10.3389/fpls.2023.1136233. Elmer, W., Ma, C. & White, J. (2018a). Nanoparticles for plant disease management. Current Opinion in Environmental Science & Health, 6, 66 – 70. https://doi.org/10.1016/j.coesh.2018.08.002. Elmer, W., Ma, C. & White, J. (2018b). Nanoparticles for plant disease management. Current Opinion in Environmental Science & Health, 6, 66 – 70. https://doi.org/10.1016/j.coesh.2018.08.002. Elmer, W. & White, J. C. (2018). The future of nanotechnology in plant pathology. Annual Review of Phytopathology, 56, 111 – 133. https://doi.org/10.1146/annurev-phyto-080417-050108. Farooq, T., Adeel, M., He, Z., Umar, M., Shakoor, N., da Silva, W., Elmer, W., White, J. C. & Rui, Y. (2021). Nanotechnology and plant viruses: an emerging disease management approach for resistant pathogens. ACS Nano, 15(4), 6030 – 6037. https://doi.org/10.1021/acsnano.0c10910. Graham, J. H., Johnson, E. G., Myers, M. E., Young, M., Rajasekaran, P., Das, S. & Santra, S. (2016). Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Disease, 100(12), 2442 – 2447. https://doi.org/10.1094/PDIS-05-16-0598-RE. Hafez, E. E., Hassan, H. S., Elkady, M. & Salama, E. (2014). Assessment of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int. J. Sci. Tech. Res.(IJSTR), 3(9), 318 – 324. Hayles, J., Johnson, L., Worthley, C. & Losic, D. (2017). Nanopesticides: a review of current research and perspectives. New Pesticides and Soil Sensors, 193 – 225. https://doi.org/10.1016/B978-0-12-804299-1.00006-0Get rights and content. Jiang, Y., Zhou, P., Zhang, P., Adeel, M., Shakoor, N., Li, Y., Li, M., Guo, M., Zhao, W. & Lou, B. (2022). Green synthesis of metal-based nanoparticles for sustainable agriculture. Environmental Pollution, 119755. https://doi.org/10.1016/j.envpol.2022.119755. Kalia, A., Abd-Elsalam, K. A. & Kuca, K. (2020). Zinc-based nanomaterials for diagnosis and management of plant diseases: Ecological safety and future prospects. Journal of Fungi, 6(4), 222. https://doi.org/10.1016/j.envpol.2022.119755. Kanakari, E. & Dendrinou-Samara, C. (2023). Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. Materials, 16(6), 2388. https://doi.org/10.3390/ma16062388. Khan, M. R. & Siddiqui, Z. A. (2021). Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita and Rhizoctonia solani. Horticulture, Environment, and Biotechnology, 62, 225 – 241. https://doi.org/10.1007/s13580-020-00312-z. Khan, M. R., Siddiqui, Z. A. & Fang, X. (2022). Potential of metal and metal oxide nanoparticles in plant disease diagnostics and management: Recent advances and challenges. Chemosphere, 134114. https://doi.org/10.1016/j.chemosphere.2022.134114. Khan, M. & Siddiqui, Z. A. (2018). Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathology, 71, 355 – 364. https://doi.org/10.1007/s42360-018-0064-5. Rajiv, P., Rajeshwari, S. & Venckatesh, R. (2013). Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 384 – 387. https://doi.org/10.1016/j.saa.2013.04.072. Rajwade, J. M., Chikte, R. G. & Paknikar, K. M. (2020). Nanomaterials: new weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology, 104, 1437 – 1461. https://doi.org/10.1007/s00253-019-10334-y. Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature ecology & evolution, 3(3), 430-439. https://doi.org/10.1038/s41559-018-0793-y Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., Bindraban, P. & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17, 1 – 21. https://doi.org/10.1007/s11051-015-2907-7. Siddiqui, Z. A., Khan, A., Khan, M. R. & Abd-Allah, E. F. (2018). Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris Medik.). Acta Phytopathologica et Entomologica Hungarica, 53(2), 195 – 211. https://doi.org/10.1556/038.53.2018.012. Siddiqui, Z. A., Khan, M. R., Abd_Allah, E. F. & Parveen, A. (2019). Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. International Journal of Vegetable Science, 25(5), 409 – 430. https://doi.org/10.1080/19315260.2018.1523267. Thornberry, H. H. (1950). A paper-disk plate method for the quantitative evaluation of fungicides and bactericides. Phytopathology, 40(5). Wani, A. H. & Shah, M. A. (2012). A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. Journal of Applied Pharmaceutical Science, Issue, 40 – 44. https://doi: 10.7324/JAPS.2012.2307. Witzel, K., Buhtz, A. & Grosch, R. (2017). Temporal impact of the vascular wilt pathogen Verticillium dahliae on tomato root proteome. Journal of Proteomics, 169, 215 – 224. https://doi.org/10.1016/j.jprot.2017.04.008. Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z. & Ji, R. (2020). Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68(7), 1935 – 1947. https://doi.org/10.1021/acs.jafc.9b06615. |
|
| Date published: 2025-06-24
Download full text