Characterization of siderophore-producing bacteria isolated from plant rhizosphere
Pham Hong Hien

, Bui Huong Quynh, Vu Thi Linh, Le Quang Man, Duong Thi Nguyen

, Nguyen Van Giang

Abstract: Siderophores are synthesized by plants and microorganisms that thrive in low-iron conditions, serving as biocontrol agents and other applications in agriculture. The aim of the present study was to isolate, characterize, and optimize siderophore-producing bacterial strains DT9, DT10, and DT12. The 16S rDNA nucleotide sequence analysis revealed that DT9 and DT10 were closely related to Klebsiella pneumoniae, and DT12 was related to Acinetobacter bereziniae. All three strains produced siderophores, crucial compounds aiding plants in acquiring iron when growing in iron-scarce environments. The presented results in this study constituted preliminary findings evaluating the influences of cultural conditions on siderophore synthesis by DT9, DT10, and DT12. They demonstrated efficient siderophores synthesis when cultured at 30°C, with a culture medium pH of 7. Glycerol and (NH4)2SO4 served as the carbon and nitrogen sources for the culture medium.
Keywords: Acinetobacter bereziniae; carbon sources; Klebsiella pneumoniae; nitrogen sources; rhizospheric bacteria; siderophores
Citation: Hien, P. H., Quynh, B. H., Linh, V. T., Man, L. Q., Nguyen, D. T. & Giang, N. V. (2025). Characterization of siderophore-producing bacteria isolated from plant rhizosphere. Bulg. J. Agric. Sci., 31(2), 372–378.
References: (click to open/close) | Ahmed, E. & Holmström, S. J. M. (2014). Siderophores in environmental research: roles and applications. Microb. Biotechnology, 7(3), 196-208. Alexander, D. B. & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophores production by rhizosphere bacteria. Biology and Fertility of Soils, 12, 39-45. Alvarez, H. M. & Steinbüchel, A. (2002). Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology, 60(4), 367-376. Angel Jenifer, M. R., Reena, A., Aysha, O. S., Valli, S., Nirmala, P. & Vinothkumar, P. (2013). Isolation of siderophore-producing bacteria from rhizosphere soil and their antagonistic activity against selected fungal plant pathogens. International Journal of Current Microbiology and Applied Sciences, 2(1), 59-65. Baligar, V. C., Pitta, G. V. E., Gama, E. E. G., Schaffert, R. E., de C. Bahia Filho, A. F. & Clark, R. B. (1997). Soil acidity effects on nutrient use efficiency in exotic maize genotypes. Plant Soil, 192(1), 9-13. Bellenger, J. P., Wichard, T., Kustka, A. B. & Kraepiel, A. M. L. (2008). Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nature Geoscience, 1(4), 243-246. Braud, A., Jézéquel, K., Bazot, S. & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74(2), 280-286. Butler, A. & Theisen, R. M. (2010). Iron (III)-siderophore coordination chemistry: reactivity of marine siderophores. Coordination Chemistry Reviews, 254(3-4), 288-296. Chaudhary, Y., Gosavi, P. & Durve-Gupta, A. (2017). Isolation and application of siderophore producing bacteria. International Journal of Applied Research, 3(4), 246-250. Cornelis, P. (2010). Iron uptake and metabolism in pseudomonads. Applied Microbiology and Biotechnology, 86(6), 1637-1645. Goswami, D., Thakker, J. N., Dhandhukia, P. C. & Tejada, M. M. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture, 2(1), 1127500. Hider, R. C. & Kong, X. (2009). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637-657. Iniguez, A. L., Dong, Y. M. & Triplett, E. W. (2004). Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions, 17(10), 1078-1085. Ismail, A., Bedell, G. W. & Lupan, D. M. (1985). Effect of temperature on siderophore production by Candida albicans. Biochemical and Biophysical Research Communications, 132(3), 1160-1165. Jayaprakashvel, M. & Mathivanan, N. (2011). Management of plant diseases by microbial metabolites. In: Maheshwari, D. (eds), Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin, Heidelberg, 237-265. Ji, S. H., Gururani, M. A. & Chun, S. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169(1), 83-98. Kumar, V., Menon, S., Agarwal, H. & Gopalakrishnan, D. (2017). Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resource-Efficient Technology, 3(4), 434-439. Liu, D., Chen, L., Zhu, X., Wang, Y., Xuan, Y., Liu, X., Chen, L. & Duan, Y. (2018). Klebsiella pneumoniae SnebYK mediates resistance against Heterodera glycines and promotes soybean growth. Frontiers in Microbiology, 9, 1134. Payne, S. M. (1994) Detection, isolation, and characterization of siderophores. Methods in Enzymology, 235, 329-244. Postle, K. (1990). Aerobic regulation of the Escherichia coli tonB gene by changes in iron availability and the fur locus. Journal of Bacteriology, 172(5), 2287-2293. Sachdev, D. P., Chaudhari, H. G., Kasture, V. M., Dhavale, D. D. & Chopade, B. A. (2009). Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian Journal of Experimental Biology, 47(12), 993-1000. Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S. & Tribedi, P. (2016). Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, 23(5), 3984-99. Sandy, M. & Butler, A. (2009). Microbial iron acquisition: marine and terrestrial siderophores. Chemical Reviews, 109(10), 4580-4595. Sapre, S., Gontia-Mishra, I. & Tiwari, S. (2022). Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). Journal of Plant Growth Regulation, 41(2), 647-656. Sayyed, R. Z., Seifi, S., Patel, P. R., Shaikh, S. S. & Enshasy, H. E. (2019). Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. EnviroSustain., 2(2), 117-124. Sharma, T., Kumar, N. & Rai, N. (2016). Production and optimization of siderophore producing pseudomonas species isolated from Tarai region of Uttarakhand. International Journal of Pharma and Bio Sciences, 7(1), 306-314. Singh, R. P., Jha, P. & Jha, P. N. (2015). The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. Journal of Plant Physiology, 184, 57-67. Tailor, A. J. & Joshi, B. H. (2012). Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. Journal of Environmental Research and Development, 6(3A), 688-694. Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. Wang, Y., Huang, W., Li, Y., Yu, F. & Penttinen, P. (2021). Isolation, characterization, and evaluation of a high-siderophore-yielding bacterium from heavy metal-contaminated soil. Environmental Science and Pollution Research, 29(3), 3888-3899. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703. |
|
| Date published: 2025-04-28
Download full text