Change of heterotrophic respiration and biomass in oil palm planted on tropical peat soil by application of nitrogen fertilizer
Joko Tandiono

, Thamrin, Hapsoh, Trisla Warningsih
Abstract: Management of nitrogen nutrients through fertilization in oil palm plantations on peatland is essential to minimize the impact of CO₂ emissions and ensure the growth and development of the palms. The objective of this study is to understand the relationship between N fertilizer dosage and heterotrophic respiration, vegetative growth, and physiology in oil palm planted on tropical peatland. The study was conducted by using a randomized complete block design with four replications of nitrogen fertilizer treatment dosages of 0.5 kg N/palm/year, 1 kg N/palm/year, 1.5 kg N/palm/year, and a control with 0 kg N/palm/year. Observation variables include heterotrophic respiration, environmental parameters (soil temperature and ground water level, vegetative growth (height, length of fronds, girth of trunk, leaf area and dry biomass), and physiological responses (leaf greenness level and N nutrient content in palms). The research results show that the application of nitrogen fertilizer has an effect on cumulative CO₂ emissions with a positive linear relationship. Environmental factors such as soil temperature and ground water level have a role in influencing CO₂ emissions, heterotrophic respiration reaches its peak at temperature 31.0°C and ground water depth 59.3 cm. The application of nitrogen fertilizer also has an influence on palm height, frond length, palm dry biomass, and leaf greenness, but has no effect on trunk diameter, leaf area and nitrogen nutrient content in leaf tissue, where the fertilizer dose is 1.5 kg N/palm/year had a significant response.
Keywords: CO2 Flux; Nitrogen Fertilizer; Oil Palm; Peat soil
Citation: Tandiono, J., Thamrin, Hapsoh & Warningsih, T. (2025). Change of heterotrophic respiration and biomass in oil palm planted on tropical peat soil by application of nitrogen fertilizer. Bulg. J. Agric. Sci., 31(2), 313–322.
References: (click to open/close) | Agus, F. (2013). The Controversy of Palm Oil Plantation Development on Peat Land, in the Politics of Agricultural Development Facing Climate Change. Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, IAARD Press, Jakarta. Albari, J. (2016). The Role of Nitrogen and Phosphorus Fertilizers in immature Oil Palm Plants (Elaeis guineensis Jacq.). Institut Pertanian Bogor, Bogor. Amiratul, D. A., Farrah, M. M., Tan, N. P., Daljit, S. K. S. & Martini, M. Y. (2017). Nitrogen effects on growth and spectral characteristics of immature and mature oil palms. Asian Journal of Plant Sciences, 16(4), 682-3974. Astiani, D., Burhanuddin, B., Taherdjadeh, M. & Curran, L. M. (2016). Effect of water table level on soil CO₂ respiration in West Kalimantan forested and bare peatland: An experimental stage. Nusantara Bioscience, 8(2), 201-206. Batubara, S. F., Agus, F., Rauf, A. & Elfiati, D. (2019). Impact of soil collar insertion depth on microbial respiration measurements from tropical peat under an oil palm plantation. Mires and Peat., 24(6), 1–11. Cardenas, I. & Campo, J. (2007). Foliar nitrogen and phosphorous resorption and decomposition in the nitrogen-fixing tree Lysiloma microphyllum in primary and secondary seasonally tropical dry forests in Mexico. Journal of Tropical Ecology, 23(1),107–113. Casals, P., Romanyà, J., Cortina, J., Bottner, P., Couteaux, M.-M & Vallejo, V. R. (2000). CO₂ efflux from a Mediterranean Semi-arid forest soil. I. Seasonality and effects of stoniness. Biogeochemistry, 48, 261–281. Chadirin, Y., Saptomo, S. K., Rudiyanto, & Osawa, K. (2016). Biophysical Environment and CO₂ Gas Emissions of Peatlands for Sustainable Biomass Production. Jurmal Ilmu Pertanian Indonesia, 21(2), 146-151. Chesworth, W. (2008). Encyclopedia of Soil Science. Springer, Dordrecht, 155-160. Chua, J. (2021). Plant nutrition - the macro nutrients: Nitrogen. https://organicfertiliser.sg/nitrogen-plant-nutrition-macro-nutrients/. Acces on 26 June 2023 04:00 PM. Comeau, L. P., Hergoualc'h, K., Hartill, J., Smith, J., Verchot, L. V., Derek, P. & Salim, A. M. (2016). How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application? Geoderma, 268(1), 41–51. Comte, I., Colin, F., Whalen, J. K., Grünberger, O. & Caliman, J. P. (2012). Agricultural practices in oil palm plantations and their impact on hydrological changes, nutrient fluxes and water quality in Indonesia: A review. Adv. Agron., 116, 71-124. Corley, R. H. V & Tinker, P. B. (2016). The Oil Palm. 5th ed. Oxford (GB), Blackwell Science Ltd., 5th edition, 100-105. Corley, R. H. V. & Gray, B. S. (1976) Growth and Morphology. In: Oil palm research. (Ed. by R.H.V. Corley, J.J. Hardon & B.J.B.J. Wood), 7‐21, Elsevier, Amsterdam. Dariah, A., Jubaedah, J., Wahyunto, W. & Pitono, J. (2013). The effect of drainage channel water level, fertilizers, and ameliorants on CO₂ emissions in oil palm plantations on peatlands. Jurnal Littri., 19(2), 66–71. Das, S.K., Varma, A. (2010). Role of Enzymes in Maintaining Soil Health. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Springer, Berlin, Heidelberg. Soil Biology, 22, 25-42. Faustina, E., Sudradjat & Supijatno (2015). Optimization of nitrogen and phosphorus fertilizer on two principals old of oil palm (Elaeis guineensis Jacq.). Asian J. Applied Sciences, 3(3),421–428. Fenn, K. M., Malhi, Y. & Morecroft, M. D. (2010). Soil CO₂ Efflux in a Temperate Deciduous Forest: Environmental Drivers. Elsevier, 1685-1693. Furnando, E., Amir, T. A. & Anita, S. (2014). Study of carbon dioxide emissions from three types of peatlands in Tanjung Leban and Sepahat Villages, Bukit Batu District, Bengkalis Regency. JOM FMIPA, 1(2), 228-236. Geisseler, D., Horwath, W. R. & Scow, K. M. (2011). Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia, 54(2), 71–78. Gerritsma, W. & Soebagyo, F. X. (1999). An analysis of the growth of leaf area of oil palms in Indonesia. Exp. Agric., 35(3), 293‐308. Ghorbani, M., Kulshreshtha, S. & Jamali, M. (2018). Economic value of greenhouse gas emissions from crop production in Iran. Bulg. J. Agric. Sci., 24(4), 537–553. Hartatik, W., Subiksa, I. G. M. & Dariah, Ai. (2011). Chemical and Physical Properties of Peat Soil. In: Sustainable Peatland Management. Bogor: Balai Penelitian Tanah, 45. Hasputri, R., Sudradjat & Sugiyanta (2017). The roles of organic and NPK compound fertilizers for four year old mature oil palm (Elaeis guieneensis). IJSBAR, 36(1), 213-225. Henson, I. E., Haniff Harun, M., Mazli, E. & Tayeb Dolmat, M. (2003). Estimating density and biomass of oil palm trunks. In: Proc. Agric. Conf. Palm oil: the power‐house for the global oils & fats economy, 975‐983, Malaysian Palm Oil Board, Kuala Lumpur, 24–28 Aug. Hikosaka, K. (2005). Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover. Annals of Botany, 95(3), 521–533. Jacquemard, J. C. (1979) Contribution to the study of the height growth of the stems of Elaeis guineensis Jacq. Study of the L2T x D10D cross. Oléagineux, Revue Internationale des corps gras, 34, 492‐497. Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D., Prosser, J. I., Singh, B. K., Subke, J. A., Wookey, P. A., Agren, G. I., Sebastia, M. T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N. & Phartley, I. P. (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513(7516), 8184. Kechavarzi, C., Dawson, Q. & Bartlet, M. (2010). The role of soil moisture, temperature and nutrient amandment on CO₂ fluks from agricultural peat soil microcosm. Geoderma, 154(3-4), 203–210. Kii, M. I., June, T. & Santikayasa, I. P. (2020). CO₂ Dynamics Modeling in Oil Palm. Agromet., 34(1), 42-54. Kotowska, M. M., Leuschner, C., Triadiati, T., Meriem, S. & Hertel, D. (2015). Quantifying above‐and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Global Change Biology, 21(10), 3620– 3634. Liu, W., Zhang, Z. H. E. & Wan, S. (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Chang. Biol., 15(1), 184–195. Manahan, S., Idwar & Wardati (2016). The Effect of NPK Fertilizer and Vermicompost on the Growth of Oil Palm (Elaeis guineensis Jacq.) in Main Nursery. JOM Faperta Fakultas Pertanian Universitas Riau., 3(2), 1– 10. Martins, C. S., Macdonald, C. A., Anderson, I. C. & Singh, B. K. (2016). Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dryland ecosystems. Soil Biology and Biochemistry, 100, 21-32. Mobley, H., Island, M. D. & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiological Reviews, 59(3), 451-480. Nugrahaa, M. I., Annisab, W., Syaufinac, L. & Anwar, S. (2016). Capillary water rise in peat soil as affected by various groundwater levels. Indonesian Journal of Agricultural Science, 17(2), 75-83. Prayitno, M. B. & Runtung, P. E. A. (2018). The Effect of Groundwater Level and Nitrogen Fertilizer on Carbon Emissions of Rice Plants on Peat Soil. Prosiding Seminar Nasional Lahan Suboptimal. Unsri Press, Palembang. Purwanto, O. P. (2017). Optimization of Nitrogen, Phosphorus, and Potassium Fertilizers in Mature Oil Palm. Institut Pertanian Bogor, Bogor. Putri, T. T. A., Syaufina, L. & Anshari, G. Z. (2016). Rhizosphere and Non-Rhizosphere Carbon Dioxide (CO₂) Emissions from Oil Palm (Elaeis guineensis) Plantations on Shallow Peat Lands. Tanah Dan Iklim., 40(1), 43–50. Rahhutami, R., Sudradjat, A. & Yahya, S. (2015). Optimization and effect of N, P and K single fertilizer package rate on two years old immature oil palm (Elaeis guineensis Jacq.). Asian Journal of Applied Sciences, 3(3), 382- 387. Ramadhaini, R. F., Sudradjat, A. & Wachjar. (2014). Optimization of NPK and Calcium Compound Fertilizer Dosage on Oil Palm Seedlings (Elaeis guineensis Jacq.) in the Main Nursery. Agron. Indonesia, 42(1), 52-58. Razak, F. R. (2019). The Impact of Oil Palm Plant Fertilization on Heterotrophic Respiration in Peatlands. Pontianak. Fakultas Pertanian, Universitas Tanjungpura. Rosalina, F. & Kahar, M. S. (2018). The effect of composting azolla compost fertilizer and humic material on CO₂ gas production in sand land. Bioscience, 2(1), 29–37. Salma, J. F., Sugeng, P. & Maswar. (2019). The Effect of Fertilization on Peat Land on Soil Characteristics, CO₂ Emissions, and Rubber Plant Productivity. Tanah dan Sumberdaya Lahan. ,6(1), 1145–1156. Salampak, S. & Amelia, V. (2014). Carbon Dioxide Gas Flux in Inland Peat Soil in Kalampangan, Central Kalimantan. Fakultas Pertanian, Universitas Palangkaraya, Kalimantan Tengah. Saptomo, S. K., Farida, A., Chadirin, Y., Setiawan, B. I. & Osawa, K. (2019). Estimation of CO₂ Emissions from Peatlands Using Artificial Neural Network (ANN) Models. Jurnal Keteknikan Pertanian, 7(2), 121-126. Schindler, U., Behrendt, A. & Müller, L. (2003). Change of soil hydrological properties of fens as a result of soil development. J. Plant Nutr. Soil Sci., 166(3), 357–363. Schjønning, P., Thomsen, I. K., Moldrup, P. & Christensen, B. T. (2003). Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Sci. Soc. Am. J., 67(1), 156–165. Schwärzel, K., Šimůnek, J., van Genuchten, M. T. & Wessolek, G. (2006). Measurement modeling of soil-water dynamics evapotranspiration of drained peatland soils. J. Plant Nutr. Soil Sci., 169(6), 762–74. Shintarika, F. (2014). Optimization of Nitrogen, Phosphorus, and Potassium Fertilizers in first year Immature Oil Palm , Tesis S2, Institut Pertanian Bogor, Bogor. Šnajdr, J., Valášková, V., Merhautová, V. R., Herinková, J., Cajthaml, T. & Baldrian, P. (2008). Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem., 40(9), 2068–2075. Susilawati, H. L., Setyanto, P., Ariani, M., Hervani, A. & Inubushi, K. (2016). Influence of water depth and soil amelioration on greenhouse gas emissions from peat soil columns. Soil Science and Plant Nutrition, 62(1), 57-68. Sutarta, E. S., Rahutomo, S., Darmosarkoro, W. & Winarna (2007). The role of nutrients and nutrient sources in oil palm fertilization. In: Darmosarkoro, W. Sutarta, E.S. Winarna. editors. Oil Palm Land and Fertilization. Medan. Indonesia Oil Palm Research Institue, Medan. Suharno. S., Mawardi, I., Setiabudi., Lunga, N. & Tjitrosemito, S. (2007). Nitrogen-use efficiency in different vegetation type at Cikaniki Research Station, Halimun-Salak Mountain National Park, West Java. Biodiversitas, 8(4), 287–294. Sudradjat., Darwis, A and Wachjar, A. (2014). Optimization of nitrogen and phosphorus for oil palm (Elaeis guineensis Jacq.) seedling in the main nursery. Indonesia Journal of Agronomy 42(3), 222–227. Tuah, N., Sulaeman, R. & Yoza, D. (2017). Calculation of Aboveground Biomass and Carbon in the Rumbio Customary Forest, Kampar Regency. Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, 4(1), 1–10. Uning, R., Latif, M. T., Othman, M., Juneng, L., Hanif, N. M., Nadzir, M. S. M., Maulud, K. N. A., Jaafar, W. S. W. M., Said, N. F. S., Ahamad, F. & Takriff, M. S. (2020). A review of Southeast Asian Oil Palm And its CO2 fluxes. Sustainability, 12(12), 1–15. Von Uexkull, H. R. & Fairhurst, T. H. (1991). Fertilizing for High Yield and Quality: the Oil Palm. Bern (CH), International Potash Institute. Wahyunto Nugroho, K., Ritung, S. & Sulaeman, Y. (2014). Indonesian Peatland Map: Method, Certainty and Uses. Jakarta, Badan Penelitian dan Pengembangan Pertanian dan ICCTF Badan Perencanaan Pembangunan Nasional. Winarna, W. & Santoso, H. (2020). Characteristics of CO₂ Emissions in Peat Soils Under Oil Palm Plantations. Jurnal Pen. Kelapa Sawit, 28(1), 41-50. |
|
| Date published: 2025-04-28
Download full text