A genome-wide SNPs searching using the Illumina BeadChip in Jalgin Merino sheep breed
A. Krivoruchko
, A. Likhovid
, A. Kanibolotskaya
, T. Saprikina
, N. Kizilova
, M. Kukharuk, O. Yatsyk
Abstract: The massive implementation of genotyping by sequencing method (GBS) in Jalgin Merino sheep breed, requires the identification of loci in the genome with a sufficient frequency of occurrence in the population. To identify them, genotyping of Jalgin Merino sheep was carried out using Ovine Infinium HD BeadChip 600K. As a result of polymorphism evaluation of 606 000 loci, 729 SNPs were selected with a frequency of occurrence of homozygous variants in the range of 0.2850-0.3149. After excluding substitutions located closer than one centimorganide, a list of 468 polymorphisms was obtained. The selected substitutions were located on all 26 autosomes. The greatest number of polymorphisms were on the first three chromosomes. The least substitutions were found on chromosomes 24, 25, and 26. Only one substitution with the required frequency of occurrence was identified on the X chromosome. The average distance between SNPs was 3200 to 7000 kbp. The list of selected polymorphisms can be used to confirm the reliability of the origin in the molecular genetic examination of sheep of the Jalgin Merino breed.
Keywords: genotyping by sequencing (GBS); Jalgin merino sheep breed; NGS; SNP
Citation: Krivoruchko, A., Likhovid, A., Kanibolotskaya, A., Saprikina, T., Kizilova, N., Kukharuk, M. & Yatsyk, O. (2024). A genome-wide SNPs searching using the Illumina BeadChip in Jalgin Merino sheep breed. Bulg. J. Agric. Sci., 30(6), 1083–1089
References: (click to open/close) | Al-Atiyat, R. M. (2015). The power of 28 microsatellite markers for parentage testing in sheep. Electronic Journal of Biotechnology, 18(2), 116-121. Braz, C. U., Rowan, T. N., Schnabel, R. D. & Decker, J. E. (2021). Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci. Rep., 11, 13335. Brito, L. F., Clarke, S. M., McEwan, J. C., Miller, S. P., Pickering, N. K., Bain, W. E., Dodds, K. G., Sargolzaei, M. & Schenkel, F. S. (2017). Prediction of genomic breeding values for growth, carcass and meat quality traits in a multi-breed sheep population using a HD SNP chip. BMC Genet., 18, 7. Ciani, E., Mastrangelo, S., Da Silva, A., Marroni, F., Ferencakovic, M., Ajmone-Marsan, P., Baird, H., Barbato, M., Colli, L., Delvento, C., Dovenski, T., Gorjanc, G., Hall, S. J. G., Hoda, A., Li, M-H., Markovic, B., McEwan, J., Moradi, M. H., Ruiz Larranaga, O., Ruzic-Muslic, D., Salamon, D., Simcic, M., Stepanek, O., Econogene Consortium, Sheephapmap Consortium, Curik, I., Cubric-Curik, V., Johannes, A. & Lenstra, J. A. (2020). On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet. Sel. Evol., 52, 25. de Camargo, G. M. F. (2019). The role of molecular genetics in livestock production. Animal Production Science, 59(2), 201–206. De Donato, M., Peters, S. O., Mitchell, S. E., Hussain, T. & Imumorin, I. G. (2013). Genotyping-by-sequencing (GBS): A novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLOS ONE, 8(5), e62137. Edea, Z., Dessie, T., Dadi, H., Do, K-T. & Kim, K-S. (2017). Genetic diversity and population structure of Ethiopian sheep populations revealed by High-Density SNP markers. Front. Genet., 8, 218. Gao, G., Gao, N., Li, S., Kuang, W., Zhu, L., Jiang, W., Yu, W., Guo, J., Li, Z., Yang, C. & Zhao, Y. (2021). Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population. Front. Genet., 12, 614087. Gebrehiwot, N. Z., Strucken, E. M., Marshall, K., Aliloo, H. & Gibson, J. P. (2021). SNP panels for the estimation of dairy breed proportion and parentage assignment in African crossbred dairy cattle. Genet. Sel. Evol., 53, 21. Holman, B. W. B. & Malau-Aduli, A. E. O. (2012). A review of sheep wool quality traits. Annual Review & Research in Biology, 2(1), 1-14. Hulsegge, I., Schoon, M., Windig, J., Neuteboom, M., Hiemstra, S. J. & Schurink, A. (2019). Development of a genetic tool for determining breed purity of cattle. Livest. Sci., 223, 60–67. McClure, M. C., McCarthy, J., Flynn, P., McClure, J. C., Dair, E., O'Connell, D. K. & Kearney, J. F. (2018). SNP data quality control in a national beef and dairy cattle system and highly accurate SNP based parentage verification and identification. Front. Genet., 9, 84. Mrode, R. A., Ojango, J. M. K., Okeyo, A. M. & Mwacharo, J. (2019). Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: current status and future prospects. Front. Genet., 9, 694. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J. & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The Am. J. Hum. Genet., 81, 559–575. Rahman, M. A., Juyena, N. S., Shamsuddin, M. & Bhuiyan, M. M. U. (2021). Genomic tools and genetic improvement of crossbred Friesian cattle. Res. Agric. Livest. Fish., 8(1), 89-107. Tortereau, F., Moreno, C. R., Tosser-Klopp, G., Servin, B. & Raoul, J. (2017). Development of a SNP panel dedicated to parentage assignment in French sheep populations. BMC Genet., 18, 50. Willis, R. C., Burrell, A., Swimley, M., Siddavatam, P. & Conrad, R. (2018). Modular automation solution for genotyping by sequencing for animal breeding. Proceedings of the World Congress on Genetics Applied to Livestock Production, Volume Technologies - Genotyping, 11, 313. Xu, S-S., Gao, L., Shen, M. & Lyu, F. (2021). Whole-genome selective scans detect genes associated with important phenotypic traits in sheep (Ovis aries). Front. Genet., 12, 738879. |
|
| Date published: 2024-12-16
Download full text