Pyrogenic carbon in soils dominated in mine-energy regions of Bulgaria
Venera Tsolova
, Martin Banov
, Viktor Kolchakov
, Plamen Tomov
Abstract: Pyrogenic carbon (PyC) is a temperature forcing agent, air pollutant and dangerous to human health, but its functions in soils are still under discussion. There is a huge knowledge gap in Bulgaria on PyC distribution in soils especially in those located in mine-energy regions where the PyC major source are concentrated. Therefore, the present study aims to propose a method for determination of PyC content and to present its 3D-distribution in soils located in the oldest mine-energy regions of Bulgaria.
The method described in this article is a modification of the method developed by Lim and Cachier and uses a dichromate mixture for isolation of PyC fraction. It is experimented with Vertisols which are considered PyC-containing soils. The method is also applicable to soils strongly enriched with coal fragments that are usually located in mine-energy regions of Bulgaria.
According to the results obtained a strong variation of PyC content was established in studied soils from Maritsa-iztok and Pernik mine-energy regions (0.10% – 19.07%). A higher content (max 19.07%, average 4.30%) was registered in the region of Pernik, where weakly transformed organic artefacts (soot and coal) increased weather-resistant pyromorphic carbon forms.
According to the developed evaluative scale, the medium content of PyC prevails in Bulgarian soils – from 0.29% to 0.51%. The factors influencing this distribution are: paleo- and present fires, the content of coal impurities, and deposition of PyC-enriched aerosols emitted from coal operating thermal-electric power plants, domestic heating with coal, coal mining and transport.
Keywords: dichromate oxidation; mine-energy regions; pyrogenic carbon; Technosol; Vertisol
Citation: Tsolova, V., Banov, M., Kolchakov, V. & Tomov, P. (2024). Pyrogenic carbon in soils dominated in mine-energy regions of Bulgaria. Bulg. J. Agric. Sci., 30(6), 982–993
References: (click to open/close) | Andreae, M. O. & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15(4), 955‑966. https://doi.org/10.1029/2000gb001382. Arctic Council (2013). Arctic council task force on short-lived climate forcers: Recommendations to reduce black carbon and methane emissions to slow Arctic climate change. Arctic Council URL: http://www.arctic-council.org/index.php/en/our-work2/8-news-and-events/320-technical-report-of-the-arctic-council-task-force-on-short-lived-climate-forcers. Bird, M. I., Moyo, C., Veenendaal, E. M., Lloyd, J. & Frost, P. (1999). Stability of elemental carbon in a savanna soil. Global Biogeochemical Cycles, 13(4), 923-932. https://doi.org/10.1029/1999gb900067. Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. (2015). The pyrogenic carbon cycle. Annual Review of Earth and Planetary Sciences, 43, 9.1‑9.26. https://doi.org/10.1146/annurev-earth-060614-105038. BIS (2012). BDS ISO 11464. Soil Quality - Pretreatment of samples for physicochemical analysis. Bulgarian Institute for Standardization. URL: https://bds-bg.org/en/project/show/bds:proj:86215. BIS (2019a). BDS ISO 18400-102. Soil quality - Sampling - Part 102: Selection and application of sampling techniques. Bulgarian institute for standardization. URL: https://bds-bg.org/en/project/show/bds:proj:109684. BIS (2019b). BDS ISO 18400-205. Soil quality - Sampling - Part 205: Guidance on the procedure for investigation of natural, near-natural and cultivated sites. Bulgarian Institute for Standardization. URL: https://bds-bg.org/en/project/show/bds:proj:109689. BIS (2019c). BDS ISO 18400-104. Soil quality - Sampling - Part 104: Strategies. Bulgarian Institute for Standardization. URL: https://bds-bg.org/en/project/show/bds:proj:109687. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G. & Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380‑5552. https://doi.org/10.1002/jgrd.50171. Bucheli, T. D., Blum, F., Desaules, A. & Gustafsson, O. (2004). Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere, 56(11), 1061‑1076. https://doi.org/10.1016/j.chemosphere.2004.06.002. Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D. & Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37, 1477‑1488. https://doi.org/10.1016/j.orggeochem.2006.06.022. Duarte, R. B., Pio, C. & Duarte, A. (2005). Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions. Analytica Chimica Acta, 530(1), 7‑14. https://doi.org/10.1016/j.aca.2004.08.049. Elias, V., Simoneit, B. T., Cordeiro, R. & Turcq, B. (2001). Evaluating levoglucosan as an indicator of biomass burning in Carajás, amazônia: a comparison to the charcoal record. Geochimica et Cosmochimica Acta, 65(2), 267‑272. https://doi.org/10.1016/s0016-7037(00)00522-6. Engling, G., Zhang, Y., Chan, C., Sang, X., Lin, M., Ho, K., Li, Y., Lin, C. & Lee, J. (2017). Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus B: Chemical and Physical Meteorology, 63(1), 117‑128. https://doi.org/10.1111/j.1600-0889.2010.00512.x. FAO (2006). Guidelines for soil description. Fourth Edition. FAO. Gehring, A. U., Guggenberger, G., Zech, W. & Luster, J. (1997). Combined magnetic, spectroscopic and analytical-chemical approach to infer genetic information for a Vertisol. Soil Science Society of America Journal, 61, 78‑85. https://doi.org/10.2136/sssaj1997.03615995006100010013x. Gelinas, Y., Prentice, K., Baldock, J. & Hedges, J. (2001). An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environmental Science & Technology, 35(17), 3519‑3525. https://doi.org/10.1021/es010504c. Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. (1998). Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Organic Geochemistry, 29(4), 811‑819. https://doi.org/10.1016/s0146-6380(98)00194-6. Griffin, J. & Goldberg, E. (2003). The fluxes of elemental carbon in coastal marine sediments. Limnology and Oceanography, 20(3), 456‑463. https://doi.org/10.4319/lo.1975.20.3.0456. Gurov, G. & Artinova, N. (2015). Textbook on soil science. 2nd edition. Intelexpert-94 Publishing House, Plovdiv, 258 (Bg). Gustafsson, O., Haghseta, F., Chan, C., MacFarlane, J. & Gschwend, P. (1996). Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environmental Science & Technology, 31(1), 203‑209. https://doi.org/10.1021/es960317s. Gustafsson, O., Bucheli, T., Kukulska, Z., Andersson, M., Largeau, C., Rouzaud, J., Reddy, C. & Eglinton, T. (2001). Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles, 15(4), 881‑890. https://doi.org/10.1029/2000gb001380. IUSS Working Group WRB (2022). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria. Koinov, V., Trashliev, H., Yolevski, M., Andonov, T., Ninov, N., Hadzhiyanakiev, A., Angelov, E., Boyadzhiev, T., Fotakieva, E., Krastanov, S. & Staykov, Y. (1968). Soil map of Bulgaria at a scale of 1:400,000. GUGK, Sofia (Bg). Kononova, M. M. (1963). Soil organic matter. Russian Academy of Science, Moscow, 314 (Ru). Kuhlbusch, T. A. J. (2002). Method for determining black carbon in residues of vegetation fires. Environmental Science & Technology, 29(10), 2695‑2702. https://doi.org/10.1021/es00010a034. Kuzev, L. V., Zvetkov, C. H. & Zvetkov, H. C. (2000). Separation of coal refuse from Maxim dump by means of hydrocycloning. In: Mineral Processing on the Verge of the 21st Century, Proceedings of the 8th International Mineral Processing Symposium, Antalya, Turkey, 16-18 October 2000, 175-183. Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I. & Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology & Biochemistry, 41, 210‑219. https://doi.org/10.1016/j.soilbio.2008.10.016. Lee, H., Park, S. S., Kyung, W. K. & Young, J. K. (2008). Source Identification of PM2.5 Particles Measured in Gwangju, Korea. Atmospheric Research, 88, 199‑211. https://doi.org/10.1016/j.atmosres.2007.10.013. Lim, B. & Cachier, H. (1996). Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays. Chemical Geology, 131, 143‑154. https://doi.org/10.1016/0009-2541(96)00031-9. Louchouarn, P., Kuo, L., Wade, T. & Schantz, M. (2009). Determination of levoglucosan and its isomers in size fractions of aerosol standard reference materials. Atmospheric Environment, 43, 5630‑5636. https://doi.org/10.1016/j.atmosenv.2009.07.040. Lucheta, Adriano Reis, Cannavan, Fabiana de Souza, Tsai, Siu Mui, Kuramae & Eiko Eurya (2017). Soil Fraction and Black Carbon Particles of Amazonian Dark Earth Harbor Different Fungal Abundance and Diversity. Pedosphere, 27(5). DOI: 10.1016/S1002-0160(17)60415-6. McBeath, A., Smernik, R., Schneider, M. W., Schmidt, M. I. & Plant, E. (2011). Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Organic Geochemistry, 42(10), 1194‑1202. https://doi.org/10.1016/j.orggeochem.2011.08.008. Morrison, R. I. & Bick, W. (1967). The wax fraction of soils: separation and determination of some components. Journal of the Science of Food and Agriculture, 18, 351. https://doi.org/10.1002/jsfa.2740180806. Nguyen, T. H., Brown, R. A. & Ball, W. P. (2004). An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Organic Geochemistry, 35(3), 217‑234. https://doi.org/10.1016/j.orggeochem.2003.09.005. Parashar, D. C., Ranu Gadi, Mandal, T. K. & Mitra, A. P. (2005). Carbonaceous aerosol emissions from India. Atmospheric Environment, 39, 7861‑7871. https://doi.org/10.1016/j.atmosenv.2005.08.034. Pignatello, J., Uchimiya M., Abiven S. & Schmidt, M. I. (2015). Evolution of biochar properties in soil. In: Lehmann J., Joseph S. (Eds) Biochar for environmental management. Science, Technology and Implementation. Routledge, 449. Preston, M. C. & Schmidt, M. W. (2006). Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties. Biogeosciences Discussions, European Geosciences Union, 3(1), 211‑271. URL: hal-00297763. Sahu, S., Beig, G. & Sharma, C. (2008). Decadal growth of black carbon emissions in India. Geophysical Research Letters, 35, 1‑5. Santin, C., Doerr, C. H., Kane, E. S., Masiello, C. A., Ohlson, M., Rosa, J. M., Preston, C. & Dittmar, T. (2015). Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 22, 76‑91. https://doi.org/10.1111/gcb.12985. Schmidt, M. I. & Noack, A. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14(3), 777‑793. https://doi.org/10.1029/1999gb001208. Schmidt, M. I., Skiemstad, J., Czimczik, C., Glaser, B., Prentice, K., Gelinas, Y. & Kuhlbusch, T. J. (2001). Comparative analysis of black carbon in soils. Global Biogeochemical Cycles, 15(1), 163‑167. https://doi.org/10.1029/2000gb001284. Schmidt, M. W., Skiemstad, J. O., Gehrt, E. & Kogel-Knabner, I. (1999). Charred organic carbon in German chernozemic soils. European Journal of Soil Science, 50(2), 351‑365. https://doi.org/10.1046/j.1365-2389.1999.00236.x. Shekar, R. & Venkataraman, C. (2002). Inventory of aerosol and sulphur dioxide emissions from India. Part I - Fossil fuel combustion. Atmospheric Environment, 36, 699‑712. https://doi.org/10.1016/S1352-2310(01)00463-0. Singh, R. P., Singh, A. K., Kumar, S. & Takemura, T. (2013). High black carbon concentrations and atmospheric pollution around Indian coal fired thermal power plants. American Geophysical Union. Skiemstad, J., Clarke, P., Taylor, J., Oades, J. & Mcclure, S. (1996). The chemistry and nature of protected carbon in soil. Soil Research, 34(2). https://doi.org/10.1071/sr9960251. Skjemstad, J., Reicosky, D., Wilts, A. & McGowan, J. (2002). Charcoal carbon in U.S. Agricultural Soils. Soil Science Society of America Journal, 66(4), 1249‑1255. https://doi.org/10.2136/sssaj2002.1249. Smith, D. M., Griffin, J. J. & Goldberg, E. D. (1973). Elemental carbon in marine sediments: A baseline for burning. Nature, 241(5387), 268‑270. https://doi.org/10.1038/241268a0. Tsolova, V., Banov, M., Ivanov, P. & Hristova, M. (2011). Organic matter supply in reclaimed Technosols of Bulgaria. Soil Science, Agrochemistry and Ecology, XLV(1-4), 55‑58 (Bg). Tsolova, V., Kolchakov, V. & Zhiyanski, M. (2014). Carbon, nitrogen and sulphur pools and fluxes in pyrite containing reclaimed soils (Technosols) at Gabra village, Bulgaria. Environmental Processes, 1, 405‑414. https://doi.org/10.1007/s40710-014-0030-x. U.N.E.P./W.M.O. (2011). Integrated assessment of black carbon and tropospheric ozone: Summary for decision makers. United Nations Environment Programme/ World Meteorological Organization URL: https://wedocs.unep.org/20.500.11822/8028. U.S. EPA (2012). Report to Congress on Black Carbon, EPA-450/R-12-001. U.S. Environmental Protection Agency, Washington, D. C. URL: https://19january2017snapshot.epa.gov/www3/airquality/blackcarbon/2012report/fullreport.pdf. Van Krevelen, D. (1950). Graphical statistical method for the study of structure and reaction processes of coal. Fuel, 29, 269. Wang, X., Peng, P. A. & Ding, Z. L. (2005). Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 9‑19. https://doi.org/10.1016/j.palaeo.2005.03.023. Winkler, M. G. (2017). Charcoal Analysis for Paleoenvironmental Interpretation: A Chemical Assay. Quaternary Research, 23(3), 313‑326. https://doi.org/10.1016/0033-5894(85)90038-9. Wolbach, W. S. & Anders, E. (1989). Elemental carbon in sediments: Determination and isotopic analysis in the presence of kerogen. Geochimica et Cosmochimica Acta, 53(7), 1637‑1647. https://doi.org/10.1016/0016-7037(89)90245-7. Zhou, Z., Cui, J., Xu, P. & Tang, H. (2019). Progress in biodegradation of low molecular weight polycyclic aromatic hydrocarbons. Chinese Journal of Biotechnology, 35(11). https://doi.org/10.13345/j.cjb.190260. |
|
| Date published: 2024-12-16
Download full text