Seasonal variations of gas exchange parameters in mono-dominated by Fagus sylvatica and Picea abies stands
Svetoslav Anev
, Sonya Damyanova
Abstract: In carrying out the long-term ecological monitoring activities in the forest site “Petrohan”, the seasonal variations of photosynthetic light-response curves were studied in mono-dominated by European beech (Fagus sylvatica L.) natural forest and Norway spruce (Picea abies Karst.) plantation in West Stara Planina Mountain. The results showed that light curves vary much more during vegetation season in Norway spruce than in European beech. While the beech had gas-exchange parameters confirming its shade tolerance, the spruce was more intolerant to shade. Maximal photosynthesis was highest in spruce in June and permanently decreased in August and October. In contrast to spruce, beech did not have a clear vegetative peak in gas exchange. Still, it achieved a stable carbon balance and a higher carbon-use efficiency, especially before the middle of the growing season. The light-use efficiency of beech and spruce remained relatively constant at whole studied season, confirming this parameter’s species-specific character.
Keywords: light-response curve; LTER forest site; seasonal variation
Citation: Anev, S. & Damyanova, S. (2024). Seasonal variations of gas exchange parameters in mono-dominated by Fagus sylvatica and Picea abies stands. Bulg. J. Agric. Sci., 30 (Supplement 1), 138–143.
References: (click to open/close) | Anev, S. (2024). Light acclimation of European beech (Fagus sylvatica L.) saplings after canopy destruction. Foresry Ideas, 30(1), 66-78. https://forestry-ideas.info/issues/issues_Download.php?download=504. Anev, S., Tonchev, T., Dimitrova, V. & Damyanova, S. (2023). Methodological approach for long-term ecological research in forest sites. Ecologia Balkanica, 15(2), 148-155. Ben, G.-Y., Osmond, C. B. & Sharkey, T. D. (1987). Comparisons of Photosynthetic Responses of Xanthium strumarium and Helianthus annuus to Chronic and Acute Water Stress in Sun and Shade. Plant Physiology, 84(2), 476–482. https://doi.org/10.1104/pp.84.2.476. Callahan, J. T. (1984). Long-Term Ecological Research. BioScience, 34(6), 363-367. https://doi.org/10.2307/1309727. Čater, M. & Levanič, T. (2013). Response of Fagus sylvatica L. and Abies alba Mill. in different silvicultural systems of the high Dinaric karst. Forest Ecology and Management, 289, 278-288. https://doi.org/10.1016/j.foreco.2012.10.021. Darenova, E., Adamič, P. C. & Čater, M. (2024). Effect of temperature, water availability, and soil properties on soil CO2 efflux in beech-fir forests along the Carpathian Mts. CATENA, 240, 107974. https://doi.org/10.1016/j.catena.2024.107974. Farazdaghi, H. (2011). The single-process biochemical reaction of Rubisco: A unified theory and model with the effects of irradiance, CO2 and rate-limiting step on the kinetics of C3 and C4 photosynthesis from gas exchange. BioSystems, 103(2), 265–284. https://doi.org/10.1016/j.biosystems.2010.11.004. Gao, G., Hao, Y., Feng, Q., Guo, X., Shi, J. & Wu, B. (2023). Estimating canopy stomatal conductance and photosynthesis in apple trees by upscaling parameters from the leaf scale to the canopy scale in Jinzhong Basin on Loess Plateau. Plant Physiology and Biochemistry, 202, 107939. https://doi.org/10.1016/j.plaphy.2023.107939. Gardiner, E. S., Löf, M., O’Brien, J. J., Stanturf, J. A. & Madsen, P. (2009). Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies. Forest Ecology and Management, 258(5), 868–878. https://doi.org/10.1016/j.foreco.2009.03.022. Giovagnetti, V. & Ruban, A. V. (2015). Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves. Journal of Photochemistry and Photobiology B: Biology, 152, 272-278. https://doi.org/10.1016/j.jphotobiol.2015.09.010. Granier, A., Reichstein, M., Bréda, N., Janssens, I. A., Falge, E., Ciais, P., Grünwald, T., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Köstner, B., Lagergren, F.,…Wang, Q. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143(1-2), 123–145. https://doi.org/10.1016/j.agrformet.2006.12.004. Jarvis, P. G. & Leverenz, J. W. (1983). Productivity of temperate, deciduous and evergreen forests. In Physiological Plant Ecology IV (pp. 233–280). Springer. https://doi.org/10.1007/978-3-642-68156-1_9. Johnson, I. R. & Thornley, J. H. M. (1984). A model of instantaneous and daily canopy photosynthesis. Journal of Theoretical Biology, 107(4), 531–545. https://doi.org/10.1016/S0022-5193(84)80131-9. Kaiser, E., Morales, A., Harbinson, J., Kromdijk, J., Heuvelink, E. & Marcelis, L. F. M. (2015). Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany, 66(9), 2415-2426. https://doi.org/10.1093/jxb/eru406. Köstner, B., Falge, E. & Tenhunen, J. D. (2002). Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Tree Physiology, 22(8), 567–574. https://doi.org/10.1093/treephys/22.8.567. Krupková, L., Havránková, K., Krejza, J., Sedlák, P. & Marek, M. V. (2019). Impact of water scarcity on spruce and beech forests. Journal of Forestry Research, 30(3), 899-909. https://doi.org/10.1007/s11676-018-0642-5. Lambers, H. & Oliveira, R. S. (2019). Plant Physiological Ecology (3 ed.). Springer. https://doi.org/10.1007/978-3-030-29639-1. Leuchner, M., Hertel, C. & Menzel, A. (2011). Spatial variability of photosynthetically active radiation in European beech and Norway spruce. Agricultural and Forest Meteorology, 151(9), 1226-1232. https://doi.org/10.1016/j.agrformet.2011.04.014. Leverenz, J. W. (1988). The effects of illumination sequence, CO2 concentration, temperature and acclimation on the convexity of the photosynthetic light response curve. Physiologia Plantarum, 74(2), 332–341. https://doi.org/10.1111/j.1399-3054.1988.tb00639.x. Li-Cor. (2022). Using the LI-6800 Portable Photosynthesis System (2 ed.). Marinova, A., & Anev, S. (2023). Gas-exchange responses to light variation of tree species in urban landscaping. Foresry Ideas, 29(2), 287-299. https://forestry-ideas.info/issues/issues_Download.php?download=494. Naumburg, E. & Ellsworth, D. S. (2002). Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species. Tree Physiology, 22(6), 393–401. https://doi.org/10.1093/treephys/22.6.393. Prioul, J. L. & Chartier, P. (1977). Partitioning of Transfer and Carboxylation Components of Intracellular Resistance to Photosynthetic CO2 Fixation: A Critical Analysis of the Methods Used. Annals of Botany, 41(4), 789–800. http://aob.oxfordjournals.org/content/41/4/789.abstract. Reynolds, P. & Frochot, H. (2003). Photosynthetic acclimation of beech seedlings to full sunlight following a major windstorm event in France. Annals of Forest Science, 60(7), 701–709. https://doi.org/10.1051/forest:2003064. Robertson, G. P., Collins, S. L., Foster, D. R., Brokaw, N., Ducklow, H. W., Gragson, T. L., Gries, C., Hamilton, S. K., McGuire, A. D., Moore, J. C., Stanley, E. H., Waide, R. B. & Williams, M. W. (2012). Long-Term Ecological Research in a human-dominated World. BioScience, 62(4), 342-353. https://doi.org/10.1525/bio.2012.62.4.6. Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K. & Scherer-Lorenzen, M. (2019). Plant Ecology. Springer. https://doi.org/10.1007/978-3-662-56233-8. Schulze, E. D., Fuchs, M. & Fuchs, M. I. (1977). Spacial distribution of photosynthetic capacity and performance in a mountain spruce forest of Northern Germany. Oecologia, 30(3), 239-248. https://doi.org/10.1007/BF01833630. Shahanova, M., Anev, S. & Tzvetkova, N. (2018). Gas exchange parameters for ornamental species of the genus Peperomia Ruitz et Pav., grown in a vertical garden under different nutrient conditions. 2nd International Conference on Sustainability, Human Geography and Environment, Sopot, Poland. Stinziano, J. R., Hüner, N. P. A. & Way, D. A. (2015). Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree Physiology, 35(12), 1303-1313. https://doi.org/10.1093/treephys/tpv118. Thornley, J. H. M. (2002). Instantaneous canopy photosynthesis: analytical expressions for sun and shade leaves based on exponential light decay down the canopy and an acclimated non-rectangular hyperbola for leaf photosynthesis. Annals of Botany, 89(4), 451–458. https://doi.org/10.1093/aob/mcf071. Todorova, D., Aleksandrov, V., Anev, S. & Sergiev, I. (2022). Photosynthesis Alterations in Wheat Plants Induced by Herbicide, Soil Drought or Flooding. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020390. Todorova, D., Aleksandrov, V., Anev, S. & Sergiev, I. (2023). Comparative Study of Photosynthesis Performance of Herbicide-Treated Young Triticale Plants during Drought and Waterlogging Stress [Article]. Agronomy-Basel, 13(8), 14. https://doi.org/10.3390/agronomy13081992. Tognetti, R., Johnson, J. D. & Michelozzi, M. (1997). Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. I. Interactions between photosynthetic acclimation and photoinhibition during simulated canopy gap formation. Physiologia Plantarum, 101(1), 115–123. https://doi.org/10.1111/j.1399-3054.1997.tb01827.x. Tognetti, R., Michelozzi, M. & Borghetti, M. (1994). Response to light of shade-grown beech seedlings subjected to different watering regimes. Tree Physiology, 14(7-8-9), 751-758. https://doi.org/10.1093/treephys/14.7-8-9.751. Wimalasekera, R. (2019). Effect of Light Intensity on Photosynthesis. In: Photosynthesis, Productivity and Environmental Stress, 65-73. https://doi.org/10.1002/9781119501800.ch4. Wyka, T., Robakowski, P. & Zytkowiak, R. (2007). Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance. Tree Physiology, 27(9), 1293-1306. https://doi.org/10.1093/treephys/27.9.1293. Zar, J. H. (2014). Biostatistical analysis. Pearson Education Limited. http://books.google.bg/books?id=LCRFAQAAIAAJ. |
|
| Date published: 2024-12-13
Download full text