Elemental composition and radionuclide content of inflorescences from Sambucus nigra L. from different regions of Bulgaria
Krastena Nikolova, Galia Gentscheva, Nina Arhangelova, Dragomira Buhalova, Anelia Gerasimova, Vanya Slavova, Margarita Velikova, Lubomir Makedonski, Valentin Kabadjov
Abstract: This study presents gamma-spectrometric data, elemental composition, and presence of radionuclides in inflorescences of Sambucus nigra L., collected from four different regions of Bulgaria. Radionuclides belonging to two radioactive families were detected: 232Th, 226Ra, 212Pb, 214Pb, 208Tl, 214Bi, 228Ac and 40K, together with the anthropogenic radionuclide 137Cs. For all analyzed samples, the highest specific activity was observed for 40K (750-1150 Bq/kg). Radionuclide doses to an adult, who consumed herbal tea made from these medicinal herbs ranged from 2.5 to 469.9 nSv for 137Cs; 0.7 to 9.7 nSv for 238U; 0.3 to 2.8 nSv for 232Th and 7.64 to 11.7 µSv for 40K. A correlation dependence was established between the intensity of the fluorescence maximum at an excitation wavelength of 498 nm and the specific activity of radium, thorium, and potassium. The content of macroelements in inflorescences follows the sequence K > Ca > Mg and coincides with results characteristic of the region.
Keywords: elemental composition; fluorescence spectroscopy; gamma spectrometry; Sambucus nigra L.
Citation: Nikolova, K., Gentscheva, G., Arhangelova, N., Buhalova, D., Gerasimova, A., Slavova, V., Velikova, M., Makedonski, L. & Kabadjov, V. (2024). Elemental composition and radionuclide content of inflorescences from Sambucus nigra L. from different regions of Bulgaria. Bulg. J. Agric. Sci., 30 (Supplement 1), 125–131
References: (click to open/close) | Bolli, R. (1994). Revision of the Genus Sambucus; J. Cramer., Berlin, Germany. Calmon, P., Thiry, Y., Zibold, G., Rantavaara, A. & Fesenko, S. (2009). Transfer parameter values in temperate forest ecosystems: a review. J. Environ. Radioact., 100, 757–766. Desideri, D., Meli, M. & Roselli, C. (2010). Natural and artificial radioactivity determination of some medicinal plants. Journal of environmental radioactivity, 101(9), 751-756. Djelic, G., Krsti, D., Stajic, J.M., Milenkovic, B., Topuzovic, M., Nikezic, D., Vucic, D., Zeremski, T., Stankovic, M. & Kostic, D. (2016). Transfer factors of natural radionuclides and 137Cs from soil to plants used in traditional medicine in central Serbia. Journal of Environmental Radioactivity, 158-159, 81e88. Gardner, L. E. C. G. (2008). Ed.; International Society for Horticultural Science: Houston, TX, USA, 197–206. Geras’kin, S., Kim, J., Evseeva, T., Oudalova, A. & Dikarev, V. (2005). Plants ecotoxicology. A case of low doses and multipollutant exposure. Radioprotection, 40, 157–162. Handl, J., Beltz, D., Botsch, W., Harb, S., Jakob, D., Michel, R. & Romantschuk, L. D. (2003). Evaluation of Radioactive Exposure from 137Cs in Contaminated Areas of Northern Ukraine. Health Phys., 84, 502. IAEA (2010). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environment. TRS 472, Vienna. ICRP (1989). Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 1, ICRF’ Publication 56. Pergamon Press, Oxford. Imbrea, I. M., Radulov, I., Nicolin, A. L. & Imbrea, F. (2016). Analysis of macroelements content of some medicinal and aromatic plants flame atomic absorption spectrometry (FAAS). Rom. Biotechnol. Lett., 21, 11641–11649. Jee, W. S. S. & Polig, E. (1989). Local distribution and dosimetry of 226Ra in the beagle skeleton. In: Thirry fourth Annual Meeting of the Health Physics Society Abstracts of Papers Presemed at the Meeting, June 25-29,1989, Albuquerque Convention Centeer. Albuquerque, NM, 56(Suppl. 1), 26. Pergamon Press, New York. Jevremovic, M., Lazarevic, N., Pavlovic, S. & Orlic, M. (2011). Radionuclide concentrations in samples of medicinal herbs and effective dose from ingestion of 137Cs and natural radionuclides in herbal tea products from Serbian market. Isotopes in Environmental and Health Studies, 47(1), 87-92. Kilic, O., Belivermis, M., Topcuoglu, S. & Cotuk, Y. (2009). 232Th, 238U, 40K, 137Cs Radioactivity Concentrations and 137Cs Dose Rate in Turkish Market Tea, Radiat. Eff. Defects Solids, 164, 138. Kosalec, I., Cvek, J. & Tomi´c, S. (2009). Contamination of herbal herbs and herbal products. Arch. Ind. Hyg. Toxicol., 60, 485–501. Mikulic-Petkovsek, M., Ivancic, A., Todorovic, B., Veberic, R. & Stampar, F. (2015). Fruit phenolic composition of different elderberry species and hybrids. J. Food Sci., 80, 2180–2190. Mishev, P. l. & Vidolov, V. (2020). Program ANGES, Research Contact 9493/RO, Vienna, Austria, IAEA. Mitrovi´c, B., Vitorovi´c, G., Vitorovi´c, D., Panteli´c, G. & Adamovi´c, I. (2009). Natural and anthropogenic radioactivity in the environment of mountain region of Serbia. J. Environ. Monit., 11, 383–388. Mitrović, B. M., Grdović, S. N., Vitorović, G. S., Vitorović, D. P., Pantelić, G. K. & Grubić, G. A. (2014). 137Cs and 40K in some traditional herbal teas collected in the mountain regions of Serbia. Isotopes in Environmental and Health Studies, 50(4), 538-545. Młynarczyk, K., Walkowiak-Tomczak, D., Staniek, H., Kido´n, M., Łysiak, G. P. (2020). The Content of Selected Minerals, Bioactive Compounds, and the Antioxidant Properties of the Flowers and Fruit of Selected Cultivars and Wildly Growing Plants of Sambucus nigra L. Molecules, 25, 876. Nikolova, K., Eftimov, T., Pashev, A., Karadjov, M., Tzvetkova, C., Gentscheva, G., Brabant, D. & Samıa, F. (2023). Correlation between chemical characteristics and optical spectra of Spirulina commercially available on the Bulgarian market. Journal of the Turkish Chemical Society Section A: Chemistry, 10(2), 465-474. Obretenov, A. & Obretenova, D. (2002). Medicinal and Essential Plants: Tree and Shrub Species; Nova Zvezda: Sofia, Bulgaria, 20–30. Ordinance No. 11 on determining the requirements for the limits of radioactive contamination of food in the event of a radiation accident, promulgated, SG No. 44 of April 29, 2002. Qazimi, B., Stafilov, T., Andonovska, K. B., Tasev, K., Geskovski, N., Dragusheva, S., Koraqi, H. & Ejupi, V. (2024). Characterization of mineral composition of leaves and flowersof wild-growing Sambucus nigra. Acta Pharm., 74, 165–175. Ropelewska, E., Slavova, V., Sabanci, K., Aslan, M.F., Masheva, V. & Petkova, M. (2022). Differentiation of Yeast-Inoculated and Uninoculated Tomatoes Using Fluorescence Spectroscopy Combined with Machine Learning. Agriculture, 12, 1887. Salamon, I., Labun, P. & Petruska P. (2015). Occurrence of heavy metals, radioactivity, and pesticide residues in raw materials of elderberry and other herbs and fruits in Slovak Republic. Acta Hort., 1061, ISHS 2015. Senica, M., Stampar, F., Veberic, R. & Mikulic-Petkovsek, M. (2017). The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. J. Sci. Food Agric., 97, 2623–2632. Stefanova, T., Dimova, S., Arhangelova, N. & Eneva, Y. (2017). Concentration of natural radionuclides in Calendula officinalis L. flowers. Scr Sci Vox Stud., 1(1), 113. Szymański, M. & Szymański, A. (2022). Study on relationships between the content of chemical elements and polyphenols and antioxidant actovity in sambucus nigra. Journal of Elementology, 27(3), 739-753. Thomas, A. L., Chen, Y. C., Rottinghaus, G. E., Malone, A. M., Byers, P. L., Applequist, W. L. & Finn, C. E. (2006). Occurrence of rutin and chlorogenic acid in elderberry leaf, flower, and stem in response to genotype, environment, and season. In Proceedings of the Acta Horticulturae, XXVII International Horticultural Congress-IHC2006: International Symposium on Plants as Food and Medicine: The Utilization and Development of Horticultural Plants for Human Health, Seoul, Korea, 13–19. Ugur, A., Ozden, B., Sac, M. M. & Yener, G. (2003). Biomonitoring of 210Po and 210Pb using lichens and mosses around an uraniferous coal-fired power plant in western Turkey. Atmospheric Environment, 37, 2237–2245. World Health Organization (WHO) (2007). Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva: World Health Organization. |
|
| Date published: 2024-12-13
Download full text