Pichia fermentans B4-1 phytase with the potential for enhancing soil phosphorous bioavailability
Nadezhda Nankova, Maria Valkova, Emiliya Pisareva
, Anna Tomova
, Ventsislava Petrova
Abstract: A yeast strain Pichia fermentans B4-1, newly isolated from traditional fermented Bulgarian boza was chosen as a perspective producer of an extracellular phytase to degrade organic phytate and improve soil mineral conditions. The crude enzyme preparation could be applied at temperatures up to 50 °C and pH 5.0. It preserved 100 % of its activity after incubation at 45°C for 90 min. In addition to sodium phytate, the P. fermentans B4-1 phytase can hydrolyze a broad range of substrates, such as ATP, glucose 6-phosphate, fructose 1,6-biphosphate, and glycerol 2-phosphate. Partial inhibition of phytase activity was detected (59-73 % residual activity) in the presence of mono- and divalent cations like K+, Na+, Zn2+, Ca2+, Cu2+, and Mn2+ at 1 M concentration.
Keywords: phosphorus; phytase; PSM; soil fertility; yeast
Citation: Nankova, N., Valkova, M., Pisareva, E., Tomova, A. & Petrova, V. (2024). Pichia fermentans B4-1 phytase with the potential for enhancing soil phosphorous bioavailability. Bulg. J. Agric. Sci., 30 (Supplement 1), 63–68
References: (click to open/close) | Bohn, L., Meyer, A. S. & Rasmussen, S. K. (2008). Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang. Univ. Sci. B., 9, 165-191. Das, P. & Ghosh, K. (2013). The presence of phytase in yeasts isolated from the gastrointestinal tract of four major carps [Labeo rohita, Hamilton, 1822, Catla catla, Hamilton, 1822, Cirrhinus mrigala, Hamilton, 1822, Hypophthalmichthys molitrix Valenciennes,1844], climbing perch [Anabas testudineus, (Bloch, 1792)] and Mozambique tilapia (Oreochromis mossambicus) Linnaeus, 1758. Journal of Applied Ichthyology, 1-4. Demir, Y., Şenol Kotan, M., Dikbaş, N. & Beydemir, Ş. (2017). Phytase from Weissella halotolerans: purification, partial characterisation and the effect of some metals. International Journal of Food Properties, 20(suppl. 2), 2127–2137. Fageria, N. K. & Zimmermann, F. J. P. (1998). Influence of pH on growth and nutrient uptake by crop species in an Oxisol. Communications in Soil Science and Plant Analysis, 29(17–18), 2675–2682. Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M. & Zelder, O. (2005). Biotechnological production and applications of phytases. Appl. Microbiol. Biotechnol., 68(5), 588-597. In, M. J., Soe, S. W. & Oh, N. S. (2008). Fermentative production and application of acid phytase by Saccharomyces cerevisiae CY strain. Afr. J. Biotechnol, 7, 3115–3120. Kaur, G. (2020). Microbial phytases in plant minerals acquisition, in: Molecular aspects of plant beneficial microbes in agriculture, Cambridge, MA: Academic Press, 185–194. Lei, X. G. & Porres, J. M. (2007). Phytase and inositol phosphates in animal nutrition: dietary manipulation and phosphorus excretion by animals. In: Turner BL, Richardson AE, Mullaney EJ, editors. Inositol phosphates. Linking agriculture and the environment. UK: CAB International; 133-49. ISBN 1-84593-152-1. Li, X., Chi, Z., Liu, Z., Li, J., Wang, X. & Hirimuthugoda, N. Y. (2008). Purification and characterisation of extracellular phytase from a marine yeast Kodamaea ohmeri BG3. Mar. Biotechnol., 10(2), 190-197. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal Biology and Chemistry, 193, 265-275. Mohite, B. V., Marathe, K., Salunkhe, N. & Patil, S. V. (2020). Isolation and screening of phytase producing microorganisms: an essential bioinput for soil fertility. Practical handbook on agricultural microbiology (New York, NY: Humana), 337–341. Nakamura, Y., Fukuhara, H. & Sano, K. (2000). Secreted phytase activities of yeasts. Biosci. Biotech. Bioch., 64, 841–844. Nuobariene, L., Hansen, A.S., Jespersen, L. & Arneborg, N. (2011). Phytase-active yeasts from grain-based food and beer. Journal of Applied Microbiology, 110(6), 1370–1380. Ogunremi, O. R., Agrawal, R. & Sanni, A. (2020). Production and characterization of volatile compounds and phytase from potentially probiotic yeasts isolated from traditional fermented cereal foods in Nigeria. Journal, Genetic Engineering & Biotechnology, 18(1), 16. Palla, M., Cristani, C., Giovannetti, M. & Agnolucci, M. (2017). Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture-dependent and independent methods, International Journal of Food Microbiology, 250, 19-26. Pandey, A., Szakacs, G., Soccol, C. R., Rodriguez-Leon, J. A. & Soccol, V. T. (2001). Production, purification and properties of microbial phytase. Bioresour. Technol, 77, 203–214. Pires, E. B. E., de Freitas, A. J., Souza, F. F. e., Saldago, R. L., Guimarães, V. M., Pereira, F. A., Eller, M. R. (2019). Production of Fungal Phytases from Agroindustrial Byproducts for Pig Diets. Sci Rep, 9, 9256. Poirier, Y., Jaskolowski, A. & Clúa, J. (2022). Phosphate acquisition and metabolism in plants. Current Biology, 32, R589–R683. Quan, C. S., Fan, S. D., Zhang, L. H., Wang, Y. J. & Ohta, Y. (2002). Purification and properties of a phytase from Candida krusei WZ-001. Journal of Bioscience and Bioengineering, 94(5), 419–425. Ragon, M., Hoh, F., Aumelas, A., Chiche, L., Moulin, G. & Boze, H. (2009). Structure of Debaryomyces castellii CBS 2923 phytase. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 65(Pt 4), 321–326. Rizwanuddin, S., Kumar, V., Singh, P., Naik, B., Mishra, S., Chauhan, M., Saris, P. E. J., Verma, A. & Kumar V. (2023). Insight into phytase-producing microorganisms for phytate solubilization and soil sustainability. Frontiers of Microbiology, 14, 1127249. Singh, B. & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol. Mol. Biol. Plants, 17, 93–103. Tran, T. T., Mamo, G., Mattiasson, B. & Hatti-Kaul, R. (2010). A thermostable phytase from Bacillus sp. MD2: Cloning, expression and high-level production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 37(3), 279-287. Vohra, A. & Satyanarayana, T. (2002). Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala. World Journal of Microbiology and Biotechnology, 18, 687-691. Vohra, A. & Satyanarayana, T. (2004). A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. Journal of Applied Microbiology, 97, 471–476. Yao, M. Z., Lu, W. L., Chen, T. G., Wang, W., Fu, Y. J., Yang, B. S., Liang, A. H. (2014). Effect of metals ions on thermostable alkaline phytase from Bacillus subtilis YCJS isolated from soybean rhizosphere soil. Ann Microbiol, 64, 1123–1131. Yin, Q. Q., Zheng, Q. H. & Kang, X. T. (2007). Biochemical characteristics of phytases from fungi and the transformed microorganism. Animal Feed Science and Technology, 132, 341–350. Yu, P. & Chen, Y. (2013). Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702. BMC Biotechnology, 13(78), 1–7. |
|
| Date published: 2024-12-13
Download full text