Study of the antifungal effect of nanoparticles of metals and metal oxides on Fusarium oxysporum f. sp. lycopersici
Katya Vasileva
, Zhana Ivanova-Doneva
, Veneta Stoeva
Abstract: Fusarium wilt is a systemic disease, as the fungus spreads inside the infected plant. The aim of this research is to investigate the antifungal effect of different metal ions on restricting the Fusarium mycelia growth.
The pathogenicity test of all isolates was confirmed on tomato variety Ideal. The isolates from Fusarium oxysporum f. sp. lycopersici were identified with a polymerase chain reaction (PCR)-based technique.
The inhibiting effect of iron oxide (Gamma high purity 99.55%, size 18 nm), iron purity 99.55% (size 60-70 nm), iron purity 99.55% (size 790 nm), zinc (high purity 99.55%, size 60-70 nm), zinc purity 99.55% (size 790 nm), zinc oxide (purity 99.99%, size 18 nm), magnesium micron powder (purity 99.95%, size 35 µm), magnesium oxide (purity 99.95%, size 18 nm) on the mycelium growth of the Fusarium oxysporum f. sp. lycopersici was tested. The nanoparticles which demonstrate the highest restriction level on the mycelia growth of Fusarium isolates in the 3 different concentrations were zinc (high purity 99.55%, size 60-70 nm).
Keywords: antifungal effect; Fusarium oxysporum Introduction; metal ions; tomato
Citation: Vasileva, K., Ivanova-Doneva, Zh. & Stoeva, V. (2024). Study of the antifungal effect of nanoparticles of metals and metal oxides on Fusarium oxysporum f. sp. lycopersici. Bulg. J. Agric. Sci., 30(5), 821–827
References: (click to open/close) | Abd Elkodous, M., El-Sayyad, G. S., Maksoud, M. A., Kumar, R., Maegawa, K., Kawamura, G., Tan, W. K. & Matsuda, A. (2021). Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J. Hazard. Mater., 410. Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L. & White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci., 6(7), 2002–2030. Alexander, L. J. & Tucker, C. M. (1945). Physiological specialization in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici. J. Agric. Res.,70, 303-313. Arpita, D., Ramana, V. M., Chandranayaka, S., Murali, H. S. & Batra, H. V. (2012). Molecular characterization of Fusarium oxysporum f. sp. cubense isolates from banana. Pest Manag. Horticul. Ecosys., 18, 171–178. Ashraf, H., Anjum, T., Riaz, S., Batool, T., Naseem, S. & Ahmad, I. S. (2022). Sustainable synthesis of microwave assisted IONPs by using spinacia oleracea: enhances resistance against fungal wilt infection by inducing ROS and modulating defense system in tomato plants. J. Nanobiotechnol., 20, 8. Batzer, J. C., Gleason, M. & Harrington, T. (2005). Expansion of the sooty blotch and flyspeck complex on apples based on analysis of ribosomal DNA gene sequences and morphology. Mycologia, 97(6), 1268-1286. Biju, V. C., Fokkens, L., Houterman, P. M., Rep, M. & Cornelissen, B. J. (2017). Multiple evolutionary trajectories have led to the emergence of races in Fusarium oxysporum f. sp. lycopersici. Applied and environmental microbiology, 83(4), e02548-16. Bodah, E. T. (2017). Root rot diseases in plants: a review of common causal agents and management strategies. Agri. Res. Tech., 5(3), 555661. Booth, C. (1971). The Genus Fusarium. I st Edn., Commonwealth Mycological Institute, Kew. England, ISBN: 85198 046 5. Cai, G. Gale, L. R., Schneider, R. W., Kistler, H. C., Davis, R. M., Elias, K. S. & Miyao, E. M. (2003). Origin of race 3 of Fusarium oxysporum f. sp. lycopersici at a single site in California. Phytopathology, 93, 1014-1022. Chi, M.-H., Park, S.-Y., Kim, S. & Lee, Y.-H. (2009). A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog., 5(4), e1000401. Davis, R., Kimble, K. A. & Farrar, J. J. (1988). A third race of Fusarium oxysporum f. sp. lycopersici identified in California. Plant Dis., 72, 453-453. Elbasuney, S., El‑Sayyad, G., Attia, M. & Abdelaziz, A. (2022). Ferric Oxide Colloid: Towards Green Nano‑Fertilizer for Tomato Plant with Enhanced Vegetative Growth and Immune Response Against Fusarium Wilt Disease. Journal of Inorganic and Organometallic Polymers and Materials, https://doi.org/10.1007/s10904-022-02442-6. Grattidge, R. & O'Brien, R. G. (1982). Occurrence of a third race of Fusarium wilt of tomatoes in Queensland. Plant Dis., 66, 165-166. Gressel, J., Hanafi, A., Head, G., Marasas, W., Obilana, A. B., Ochanda, J., Souissi, T. & Tzotzos, G. (2004). Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot., 23(8), 661–689. Hanson, P., Lu, S. F., Wang, J. F., Chen, W., Kenyon, L., Tan, C. W., Kwee, L. T., Wang, Y. Y., Hsu, Y. C., Schafleitner, R., Ledesma, D. & Yang, R. Y. (2016). Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scient. Horti., 201, 346–354. Jain, A., Sarsaiya, S., Wu, Q., Lu, Y. & Shi, J. (2019). A review of plant leaf fungal diseases and its environment speciation. Bioengineered, 10(1), 409–424. Jones, J. B., Jones, J. P., Stall, R. E. & Zitter, T. A. (1991). Compendium of Tomato Diseases. The American Phytopathological Society. I st Edn. APS Press, New York, ISBN: 0890541205, 100. Manici, L. M., Caputo, M. F. & Saccà, L. (2017). Secondary metabolites released into the rhizosphere by Fusarium oxysporum and Fusarium spp. as underestimated component of nonspecific replant disease. Plant and Soil, 415, 85-98. Mendiburu, F. (2015). Statistical Procedures for Agricultural Research. CRAN R Package, version 1.2-3, 54-55 (https://cran.r-project.org/web/packages/agricolae). Mudili, V., Siddaih, C. N., Nagesh, M., Garapati, P., Naveen Kumar, K., Murali, H. S. & Batra, H. V. (2014). Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from India. J. Sci. Food Agric., 94(13), 2674–2683. Nayaka, S. C., Shankar, A. C. U., Niranjana, S. R. & Prakash, H. S. (2008). Molecular detection and characterisation of Fusarium verticillioides in maize (Zea mays L.) grown in southern India. Ann. Microbial., 58, 359–367. Nayaka, S. C., Shankar, A. C. U., Reddy, M. S., Niranjana, S. R., Prakash, H. S., Shetty, H. S. & Mortensen, C. N. (2009). Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Pest Manag. Sci., 65, 769–775. LeBlanc, N., Essarioui, A., Kinkel, L. & Kistler, H. C. (2017). Phylogeny, plant species, and plant diversity influence carbon use phenotypes among Fusarium populations in the rhizosphere microbiome. Phytobiomes, 1, 150–157. Powlson, D. S., Gregory, P. J., Whalley, W. R., Quinton, J. N., Hopkins, D. W., Whitmore, A. P., Hirsch, P. R. & Goulding, K. W. (2011). Goulding, soil management in relation to sustainable agriculture and ecosystem services. Food Policy, 36, 72–87. Pramanik, P., Krishnan, P., Maity, A., Mridha, N., Mukherjee, A. & Rai, V. (2020). Application of nanotechnology in agriculture. Environmental Nanotechnology, 4, Springer, Cham., 317–348. Rai, M. & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol., 94(2), 287–293. Ramana, M. V., Nayaka, S. C., Balakrishna, K., Murali, H. S. & Batra, H. V. (2012). A novel PCR-DNA probe for the detection of fumonisin producing Fusarium species from major food crops grown in southern India. Mycology, 3(3), 167–164. Thornberry, H. H. (1950). A paper-disc method for quantitative evaluation of fungicides and bactercides. Phytopathology, 40, 419-429. Xiong, W. & Zhan, A. (2018). Testing clustering strategies for metabarcoding-based investigation of community-environment interactions. Mol. Ecol. Res., 18(6), 1326-1338. Xu, L., Chu, Z., Wang, H., Cai, L., Tu, Z., Liu, H., Zhu, C., Shi, H., Pan, G. & Pan, J. (2019). Electrostatically assembled multilayered films of biopolymer enhanced nanocapsules for on-demand drug release. ACS Appl. Bio Mater., 2(8), 3429–3438. Yadav, S. K., Lal, S., Yadav, S., Laxman, J., Verma, B., Sushma, M., Choudhary, R., Singh, P., Singh, S. & Sharma, V. (2019). Use of nanotechnology in agri-food sectors and apprehensions: an overview. Seed Res., 47(2), 99–149. https://support.office. com |
|
| Date published: 2024-10-24
Download full text