Microflora of Luvisols from the territory of Western Stara Planina Mountain
Bilyana Grigorova-Pesheva
Abstract: The aim of the present study is to provide basic information on the biogenicity of the studied soils, to track the change in the microbial populations of A and B horizons, as well as to determine the impact of environmental factors on the microbial abundance of forest soils in the light of ecological forest management. The present study examines six soil profiles in Western Stara Planina Mountain. Soils are defined as Luvisols. For determination of total microbial number and the amount of individual microbiological groups (spore-forming bacteria, non-spore-forming bacteria, actinomycetes and fungi) the standard method of serial dilutions and subsequent inoculation was used. The results are reported in Colony-forming unit (CFU). Standard laboratory analyzes were used to measure the physical and chemical parameters of the soil. A horizon has a greater microbial abundance (from 13.32 and 50.69 x 105 CFU g/ dry soil) than B horizon (1.81 to 6.24 69 x 105 CFU g/ dry soil). In relation to the A horizon, the most strongly influencing factor is the content of total nitrogen (r=0.76), followed by pH (0.72) and organic carbon content (0.55). According to the B horizon, these indicators show no correlation. In the A horizon, mechanical composition and density do not correlate with total microbial numbers. In the B horizon mechanical composition and soil density have an impact on biogenicity. With highly compacted soil (bulk density above 1.3 g/cm3), suppression of the soil microbiota is observed. There are no clear dynamics in the redistribution of the percentage participation of microbial groups at depth.
Keywords: forest ecosystems; Luvisols; soil; soil microorganism; total microbial number
Citation: Grigorova-Pesheva, B. (2024). Microflora of Luvisols from the territory of Western Stara Planina Mountain. Bulg. J. Agric. Sci., 30(5), 769–776
References: (click to open/close) | Barreto-Garcia, P., Batista, S., Gama-Rodrigues, E., Paula, E. & Batista, W. (2021). Short-term effects of forest management on soil microbial biomass and activity in caatinga dry forest. Brazil. Forest Ecol. Managm., 481. Bondev, I. (2002). Geobotanical Zoning. In: Geography of Bulgaria. Physical and Socio-Economic Geography. ForCom, Sofia, 336 – 352 (Bg). Butchart, S., Walpole, M., Collen, B., Strien, A., Scharlemann, J., Almond, R., Baillie, J., Bomhard, B., Brown, C., Bruno, J., Carpenter, K., Carr, G., Chanson, J., Chenery, A., Csirke, J., Davidson, N., Dentener, F., Foster, M., Galli, A., Galloway, J., Genovesi, P., Gregory, R., Hockings, M., Kapos, V., Lamarque, J., Leverington, F., Loh, J., Mcgeoch, M., Mcrae, L., Minasyan, A., Morcillo, M., Oldfiels, Th., Pauly, D., Quader, D., Revenga, C., Sauer, J., Skolnik, B., Spear, D., Stanweel-Smith, D., Stuard, S., Symes, A., Tierney, M., Tyrrell, T., Vie, J. & Watson, R.(2010). Global biodiversity: indicators of recent declines. Science, 328 (5982), 1164-1168. Cho, S., Kim, M. & Lee, Y. (2016). Effect of pH on soil bacterial diversity. J. Ecol. Environ., 40, 10. Davis, K., Joseph, S. & Janssen, P. (2005). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol., 71, 826-834. Donov, V., Gencheva, S. & Yordanova, K. (1974). Rakovodstvo za uprajneniya po gorsko pochvoznanie. Zemizdat, Sofia, 55-57 (Bg). Egamberdieva, D. (2011). Role of Microorganisms in Nitrogen Cycling in Soils. Chapter 7. In: Miransari, M. (Ed.). Soil Nutrients. Nova Science, New York, 159-176. Eilers, K., Debenport, S., Anderson, S. & Fierer, N. (2012). Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem., 50, 58-65. Fierer, N., Schimel, J. & Holden, P. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem., 35(1), 167-176. Filcheva, E. & Tsadilas, C. (2002). Influence of cliniptilolite and compost on soil properties. Comm. Soil Sci. Plant Anal., 33, 595-607. Fonseca, C. (1990). Forest management: impact on soil microarthropods and soil microorganisms. Rev. d'Écol. Biol. Sol., 27, 269-283. Gibss, H., Johnston, M., Foley, J., Holloway, T., Monfreda, Ch., Ramankutty, N. & Zaks, D. (2008). Carbon payback times for crop-basedbiofuel expansion in the tropics: the effectsof changing yield and technology. Environ. Res. Lett., 3, 10. Graham, E., Knelman J., Schindlbacher, A., Siciliano, S., Breulmann, M., Yannarell, A., Beman, J., Abell, G., Philippot, L., Prosser, J., Foulquier, A., Yuste, J., Glanville, H., Jones, D., Angel, R., Salminen, J., Newton, R., Bürgmann, H., Ingram, L., Hamer, U., Siljanen, H., Peltoniemi, K., Potthast, K., Bañeras, L., Hartmann, M., Banerjee, S., Yu, R., Nogaro, G., Richter, A., Koranda, M., Castle, S., Goberna, M., Song, B., Chatterjee, A., Nunes, O., Lopes, A., Cao, Y., Kaisermann, A., Hallin, S., Strickland, M., Garcia-Pausas, J., Barba, J., Kang, H., Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A., Lindström, E., Basiliko, N., & Nemergut, D. (2016). Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol., 7, 1-10. Grigorova-Pesheva, B. (2020). Influence of seasonal dynamics on the microflora of two types of forest soils - Brown forest soils and Mountain-meadow soils. Pochvoznanie, agrohimiya i ecologiya., 54(2), 12-23 (Bg). Grigorova-Pesheva, B. & Hristov, B. (2021). Influence of pH, organic carbon and total nitrogen content on the amount and distribution of the different microbial groups in the organic layers of Luvisols. Ecol. Balkanica, 13(2), 47-55. Grigorova-Pesheva, B. & Petrova, K. (2022). Assesment of the impact of altitude as independent factor on the total microbial number and the ratio of major groups of soil microorganisms in Luvisols on the territory of Western Stara Planina Mauntain, In Proceedings of The Scientific Forum with international participation “Ecology and Agrotehnologies – Fundamental Science and Practical Realization”, Sofia, Bulgaria, 21 -22 October, 228 – 235. Grigorova-Pesheva, B., Hristov, B. & Petrova, K. (2022). Analysis of the microbiological characteristics of the different soil horizons of forest soils from the territory of Vitosha Nature Park. In: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 2-11 July, 333-340. Hildebrand, E. & Schack-Kirchner, H. (2002). The influence of compaction on soil structure and functions in forest sites. In: Ambasht, R. S., N. K. Ambasht (Eds.). Modern trends in applied terrestrial ecology. Springer, Boston, MA. Keenan, R., Reams, G., Achard, F., Freitas, J., Grainer, A. & Linquist, E. (2015). Dynamics of global forest area: results from the FAO Global Forest Resources Assessment. Forest Ecol. Manage., 352, 9-20. Khatoon, H., Solanki, P., Narayan, M. Narayan, M., Tewari, L. & Rai, J. (2017). Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. Int. J. Chem. Stud., 5(6), 1648-1656. Koleva-Lizama, I. (2006). Climatic characteristics of the regions - Western Stara Planina, Sredna Gora, Western Rhodopes, Central Rhodopes, Eastern Rhodopes and Strandzha. In: "20 years of large-scale monitoring of forest ecosystems in Bulgaria". In a monograph: ICP "Forests" - Assessment and monitoring of the impact of polluted air on forests - ECE/UN. UNDP–GEF. ISBN 954–90568–4–8. C. 232–233 (Bg). Küsel, K., Wagner, C. & Drake, H. (1999). Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest. FEMS Microbiol. Ecol., 29, 91-103. Lauber, C., Hamady, M., Knight, R. & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol., 75(15), 5111-5120. Lladó, S., López-Mondéjar, R. & Baldrian, P. (2017). Forest soil bacteria: diversity, involvement in ecosystem processes and response to global change. Microbiol. Mol. Biol. Rev., 81(2), e00063-16. Malcheva, B. (2020). Microbial diversity and enzymatic activity of soils in coniferous forest ecosystems. Pochvoznanie, agrohimiya i ecologiya., 54(4), 43-54 (Bg). Malcheva, B. & Velizarova, M. (2021). Influence of wildfire on soil microbial community and chemical parameters in Dolna Bania region, Bulgaria. Forestry Ideas, 27(1), 233-244. Milošević, N., Ubavić, M., Čuvardić, M., & Vojin, S. (2003). Mikrobi-značajno svojstvo za karakterizaciju plodnosti poljoprivrednog zemljišta. Agroznanje, poljoprivredni naučno stručni i informativni časopis, Banja Luka, God IV, 2,81-88. Pavlova-Traikova, E. & Marinov, I. (2021). Assessment of erosion risk in forest areas of the Otovitsa river catchment, a tributary of the Jerma river. Nauka za gorata., 2, 101-114 (Bg). Pavlova-Traykova, E. (2022). Using the EPM method for the estimationof soil erosion in forest territories in the upper partof Dzherman river. Silva Balcanica, 23, 2. Pavlova-Traykova, E., Nedkov, S. & Zhiyanski, M. (2021). Integral approach to the flood protection effect of forest with special consideration of erosion control in Bulgaria: review. In: Institut za gorata, edinadeseti sbornik s dokladi 77-87 (Bg). Redžepović, S., Blazinkov, M. Sikora, M., Husnjak, S., Colo, J. & Bogunivic, M. (2012). Enzymatic activity and microbiological characteristics of luvic and pseudogley soils in western Slavonia. Periodicum Biologum, 114(1), 111-116. Shad, P., Huyssteen, C., Micheli, E. & Vargas, R. (2014). World Reference Base For Soil Resources. International Soil Classification System For Naming Soils And Creating Legends For Soil Maps. Food and Agriculture Organization of the United Nations, Rome, 112. Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X. Li, X., Liang, W. & Chu, H. (2013). Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai mountain. Soil Biol. Biochem., 57, 204-211. Staddon, W., Duchesne, L. & Trevors, J. (1999). The role of microbial indicators of soil quality in ecological forest management. The Forestry Chronicle, 75(1), 81-86. Strickland, M., Lauber, C., Fierer, N. & Bradford, M. (2009). Testing the functional significance of microbial community composition. Ecology, 90, 441-451. Taylor, J., Wilson, B., Mills, M. & Burns, R. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem., 34, 387-401. Tripathi, B., Kim, M., Kim, Y., Byun, E., Yang, J. Ahn, J. & Lee, Y. (2018). Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Sci. Rep., 8(1), 504. Vanmechelen, L., Groenemans, R. & Van Ranst, E. (1997). Forest soil condition in Europe: results of large-scale soil survey. In: Jones, R. J. A., B. Houšková, P. Bullock, L. Montanarella (Eds.). Soil Resources of Europe, second edition. European Soil Bureau Research Report No.9, Luxembourg. Velev, St. (2002). Climatic Zoning. In: Geography of Bulgaria. Physical and socio-economic geography. Institute of Geography, BAS, Sofia, 155–157 (Bg). Wilpert, K. (2022). Forest soils- what’s their peculiarity? Soil Syst., 6(1), 5. Zhang, J., Yang, X., Song, Y., Liu, H., Wang, G., Xue, Sh., Liu, G., Ritsema, C. & Geissen, V. (2020). Revealing the nutrient limitation and cycling for microbes under forest management practices in the Loess Plateau– ecological stoichiometry. Geoderma, 361, 114108.
|
|
| Date published: 2024-10-24
Download full text