Screening of pepper (Capsicum annuum L.) genotypes for response to pathogens and pests under conditions of conventional and organic field production
K. Vasileva
, V. Yankova, V. Todorova, S. Masheva
Abstract: Monitoring of eight pepper genotypes is conducted at Maritsa Vegetable Crop Research Institute, Plovdiv, Bulgaria, during two successive years, under different diseases and pests’management systems. The surveys is carried out, using the standard field inspection methods to detect virus diseases (Tobacco mosaic virus - TMV, Cucumber mosaic virus - CMV and Tomato spotted wilt virus - TSWV, stolbur (Phytoplasma solani), verticillium wilt (Verticillium dahlia Kleb.), brown leaf spots (Alternaria solani Ellis & Martin) the pests: cotton bollworm (Helicoverpa armigera Hubn.), aphids (Homoptera:Aphididae) and thrips (Thysanoptera:Thripidae). Among observed pathogens Alternaria solani Ellis & Martin and Phytoplasma solani were most important for all varieties and breeding lines in all studied production systems as their infestation were on average 27.37% and 31.79%, respectively. During the survey, no plants with symptoms of verticillium wilting were reported in all studied genotypesunder all growing systems. The mean score of virus attack was below 12%. The average rate of brown leaf spots ranged between 29.05% for breeding line K992 to 36.26% for line K995. The established highest Phytoplasma solani attack averaged from 24.10% for Stryama to 32.15% for Kapia UV. Single plants with thrips damage were observed during seedling production and immediately after transplanting in the field. At maturity stage, an infestation of cotton bollworm (Helicoverpa armigera Hubn.) was observed, while aphids’ population was low with no colonies established. The lowest infestation rates by H. armigera were reported in pepper genotypes K992 (0.92%) and K995 (0.49%) grown under organic production conditions.
Keywords: Capsicum annuum L.; diseases; infestation; insects; screening
Citation: Vasileva, K., Yankova, V., Todorova, V. & Masheva, S. (2024). Screening of pepper (Capsicum annuum L.) genotypes for response to pathogens and pests under conditions of conventional and organic field production. Bulg. J. Agric. Sci., 30(4), 636–643
References: (click to open/close) | Arnold, A. E. & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hot spots. Ecology, 88(3), 541-549. Arnold, E., Miadlikowska, J., Higgins, L., Sarvate, D. & Gugger, P. (2009). A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst. Biol., 58, 283–297. Babu, B. S., Pandravada, S. R., Rao, R. P., Anitha, K., Chakrabarty, S. K. & Varaprasad, K. S. (2011). Global sources of pepper genetic resources against arthropods, nematodes and pathogens. Crop Protection, 30(4), 389-400. Balakishiyeva, G., Danet, J. L., Qurbanov, M., Mamedov, A., Kheyr-Pour, A. & Foissac, X. (2010). First report of phytoplasma infections in several temperate fruit trees and vegetable crops in Azerbaijan. Journal of Plant Pathology, 92. Benbrook, C. (2009). The impacts of yield on nutritional quality: lessons from organic farming. HortScience, 44(1), 12-14. Bertaccini, A. & Duduk, B. (2009). Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathologia Mediterranea, 48(3), 355-378. Bertaccini, A., Duduk, B., Paltrinieri, S. & Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences, 5(12), 1763-1788. Chaverri, P. & Samuels, G. J. (2013). Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution, 67(10), 2823-2837. Chen, L. & Kang, Y. H. (2013). Anti-inflammatory and antioxidant activities of red pepper (Capsicum annuum L.) stalk extracts: Comparison of pericarp and placenta extracts. Journal of Functional Foods, 5(4), 1724-1731. De Hoog, G. S. & Horré, R. (2002). Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses, 45(7‐8), 259-276. De Mendiburu, F. (2021). Version 1.3-5. Universidad Nacional Agraria: La Molina, Peru. Del Amor, F. M., Serrano-Martinez, A., Fortea, M. I., Legua, P. & Núñez-Delicado, E. (2008). The effect of plant-associative bacteria (Azospirillum and Pantoea) on the fruit quality of sweet pepper under limited nitrogen supply. Scientia Horticulturae, 117(3), 191-196. Delaye, L., García-Guzmán, G. & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens - are fungal lifestyles evolutionarily stable traits? Fungal Diversity, 60(1), 125-135. Doll, H., Holm, U., Sogaard, B. & Bay, H. (1994). Phenolic compounds in barley varieties with different degree of partial resistance against powdery mildew. In: International Symposium on Natural Phenols in Plant Resistance, 381, 576-582. Kelley, W. T., Boyhan, G. E., Harrison, K. A., Granberry, D. M., Langston, D. B., Sparks, A. N. & Fonsah, E. G. (2009). Commercial Pepper Production Handbook. University of Georgia, Bulletin, 1309. Kenyon, L., Kumar, S., Tsai, W. S. & Hughes, J. D. A. (2014). Virus diseases of peppers (Capsicum spp.) and their control. Academic Press. In: Advances in Virus Research, 90, 297-354. Mitchell, A. E. & Chassy, A. W. (2005). Antioxidants and the nutritional quality of organic agriculture. The Mitchell Lab–Phytochemicals & Health–Beyond Antioxidants. Mitchell, A. E., Hong, Y. J., Koh, E., Barrett, D. M., Bryant, D. E., Denison, R. F. & Kaffka, S. (2007). Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. Journal of Agricultural and Food Chemistry, 55(15), 6154-6159. Peever, T. L., Su, G., Carpenter-Boggs, L. & Timmer, L. W. (2004). Molecular systematics of citrus-associated Alternaria species. Mycologia, 96(1), 119-134. Quaglino, F., Zhao, Y., Casati, P., Bulgari, D., Bianco, P. A., Wei, W. & Davis, R. E. (2013). ‘CandidatusPhytoplasmasolani’, a novel taxon associated with stolbur-and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_8), 2879-2894. Reboredo, F. H., Pelica, J., Lidon, F. C., Ramalho, J. C., Pessoa, M. F., Calvão, T., Simões, M. & Guerra, M. (2018). Heavy metal content of edible plants collected close to an area of intense mining activity (southern Portugal). Environmental Monitoring and Assessment, 190, 1-11. Reboredo, F., Simões, M., Jorge, C., Mancuso, M., Martinez, J., Guerra, M., Pessoa, M. & Lidon, F. (2019). Metal content in edible crops and agricultural soils due to intensive use of fertilizers and pesticides in Terras da Costa de Caparica (Portugal). Environmental Science and Pollution Research, 26, 2512-2522. Reboredo, F. H., Barbosa, A., Silva, M. M., Carvalho, M. L., Santos, J. P., Pessoa, M. F., Ramalho, J. C. & Guerra, M. (2020). Mineral content of food supplements of plant origin, by energy dispersive x-ray fluorescence: A risk assessment. Exposure and Health, 12, 917-927. Robačer, M., Canali, S., Kristensen, H. L., Bavec, F., Mlakar, S. G., Jakop, M. & Bavec, M. (2016). Cover crops in organic field vegetable production. Scientia Horticulturae, 208, 104-110. Sánchez-García, M., Ryberg, M., Khan, F. K., Varga, T., Nagy, L. G. & Hibbett, D. S. (2020). Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proceedings of the National Academy of Sciences, 117(51), 32528-32534. Sander, J. F. & Heitefuss, R. (1998). Suceptibility to Erysiphe graminis f. sptritici and phenolic acid content of wheat as influenced by different levels of nitrogen fertilization. Journal of Phytopathology, 146(10), 495-507. Sreeramulu, D. & Raghunath, M. (2010). Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Research International, 43(4), 1017-1020. Taylor, D. L., Hollingsworth, T. N., McFarland, J. W., Lennon, N. J., Nusbaum, C. & Ruess, R. W. (2014). A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning. Ecological Monographs, 84(1), 3-20. Wang, Z. H., Li, S. X. & Malhi, S. (2008). Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal of the Science of Food and Agriculture, 88(1), 7-23. Weintraub, P. G. & Beanland, L. (2006). Insect vectors of phytoplasmas. Annu. Rev. Entomol., 51, 91-111. Wheeler, D. L., Dung, J. K. S. & Johnson, D. A. (2019). From pathogen to endophyte: an endophytic population of Verticillium dahliae evolved from a sympatric pathogenic population. New Phytologist, 222(1), 497-510. Williams, C. M. (2002). Nutritional quality of organic food: shades of grey or shades of green? Proceedings of the Nutrition Society, 61(1), 19-24. Worthington, V. (2001). Nutritional quality of organic versus conventional fruits, vegetables, and grains. The Journal of Alternative & Complementary Medicine, 7(2), 161-173. Yankova, V., Todorova, V. & Markova, D. (2021). Evaluation of pepper (Capsicum annuum L.) accessions for infestation by pests. Bulg. J. Agric. Sci., 27(2), 350-356. |
|
| Date published: 2024-08-27
Download full text