Impacts of heat stress on the photosynthetic apparatus and polen viability in green pepper cultivars (Capsicum annuum L.)
Elena Topalova
, Yanina Arnaoudova
, Velichka Todorova
Abstract: The effect of high temperature stress on photosynthetic apparatus and polen viability between two commercial sweet green pepper cultivars, Stryama and Milkana F1, was investigated. The first genotype is the father parent of the second, which was developed on the bases of male sterility. During the bud formation and flowering periods, the plants were treated with high temperatures of 40 and 45oC for 2 and 1 h, respectively. Chlorophyll fluorescence, chlorophyll content, pollen germination, flower tube length, and correlation links between the studied parameters were measured.
The applied stress increased the initial (Fo) fluorescence in dark-adapted leaves and decreased the maximum (Fm) and variable (Fv) fluorescence. The quantum yield (Fv/Fm) of the PS II also decreased in stressed plants under two temperature treatments, with the highest increase at 45oC for 1 h. Results showed that the contents of chlorophyll in pepper leaves were significantly reduced when exposed to high temperature stress throughout the experiment. The photosynthetic efficiency of cultivar Milkana F1 revealed a trend towards higher tolerance than cultivar Stryama. The cytological results of the pollen germination showed the presence of a strong heterosis effect in the Milkana F1 cultivar.
Keywords: Capsicum annuum L.; chlorophyll fluorescence; correlation; high-temperature stress; male gametophyte; tolerance
Citation: Topalova, E., Arnaoudova, Y. & Todorova, V. (2024). Impacts of heat stress on the photosynthetic apparatus and polen viability in green pepper cultivars (Capsicum annuum L.). Bulg. J. Agric. Sci., 30(4), 628–635
References: (click to open/close) | Aienl, A. S., Khetarpal, M. & Pal, C. (2011). Photosynthetic characteristics of potato cultivars grown under high temperature. American-Eurasian J. Agric. & Environ. Sci., 11(5), 633-639. Arnaoudova, Y. & Arnaoudov, B. (2020). Screening Capsicum genotypes for increased drought tolerance by in vitro pollen germination and pollen tube length. Trakia Journal of Sciences, 1, 52-58. https://doi.org/10.15547/tjs.2020.01.010 Arnaoudova, Y., Topalova, E. & Todorova, V. (2020). High temperature effect on the male gametophyte and the photosynthetic activity of two Capsicum annuum L. cultivars. Bulg. J. Agric. Sci., 26(2), 409–415. https://www.agrojournal.org/26/02-18.html. Bhandari, S. R., Kim, Y. H. & Lee, J. G. (2018). Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in paprika (Capsicum annuum L.) seedlings. Horticultural Science and Technology, 36(5), 619-629. https://doi.org/10.12972/kjhst.20180062. Burke, J. J. & Chen, J. (2015). Enhancement of reproductive heat tolerance in plants. PLoS ONE 10(4), e0122933. https://doi.org/10.1371/journal.pone.0122933. Erickson, A. N. & Markhart, A. H. (2002). Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell & Environment, 25(1), 123-130. https://doi.org/10.1046/j.0016-8025.2001.00807.x. Fumia, N., Kantar, M., Lin, Y.-P., Schafleitner, R., Lefebvre, V., Paran, I., Börner, A., Diez, M. J., Prohens, J., Bovy, A., Boyaci, F., Pasev, G., Tripodi, P., Barchi, L., Giuliano, G. & Barchenger, D. W. (2023). Exploration of high-throughput data for heat tolerance selection in Capsicum annuum. The Plant Phenome Journal, 6(1), e20071. https://doi.org/10.1002/ppj2.20071. Gisbert-Mullor, R., Padilla, Y. G., Martínez-Cuenca, M. R., López-Galarza, S. & Calatayud, A. (2021). Suitable rootstocks can alleviate the effects of heat stress on pepper plants. Scientia Horticulturae, 290, 110529. https://doi.org/10.1016/j.scienta.2021.110529. Jang, G. W., Choi, S. I., Han, X., Men, X., Kwon, H. Y., Choi, Y. E., Park, M. H. & Lee, O. H. (2020). Method validation and measurement uncertainty determination of ethoxyquin and antioxidant activity in paprika seasonings and paprika sauces frequently consumed in South Korea. Separations, 7(4), 50. https://doi.org/10.3390/separations7040050. Kalaji, M. H. & Guo, P. (2008). Chlorophyll fluorescence: a useful tool in barley plant breeding programs. Photochemistry Research Progress, 29, 439-463. Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V. & Ladle, R. J. (2014). The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. In: Emerging Technologies and Management of Crop Stress Tolerance; Elsevier: Amsterdam, The Netherlands, 347–384. ISBN 978-0-12-800875-1 https://doi.org/10.1016/B978-0-12-800875-1.00015-6. Kim, J. S., An, C. G., Park, J. S., Lim, Y. P. & Kim, S. (2016). Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chemistry, 201, 64-71. https://doi.org/10.1016/j.foodchem.2016.01.041. Koyro, HW., Ahmad, P. & Geissler, N. (2012). Abiotic Stress Responses in Plants: An Overview. In: Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Springer: New York, NY, 1-28. ISBN 978-1-4614-0815-4 https://doi.org/10.1007/978-1-4614-0815-4_1. Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol., 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1. Mittler, R., Finka, A. & Goloubinof, P. (2012). How do plants feel the heat? Trends Biochem. Sci., 37, 118–125. Nikolova, V., Petkova, V. & Poryazov, I. (2003). Possibilities for selection of garden bean (Phaseolus vulgaris L.) genotypes tolerant to high temperature. Variation of pollen viability. Annual Report of Bean Improvement Cooperative, 46, 83-84. Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V. & Ban, T. (2008). Climate change: can wheat beat the heat? Agric. Ecosyst. Environ., 126, 46-58. https://doi.org/10.1016/j.agee.2008.01.019. Petkova, V., Denev, I., Cholakov, D. & Porjazov, I. (2007). Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Scientia Horticulturae, 111(2), 101-106. https://doi.org/10.1016/j.scienta.2006.10.005. Petkova, V., Nikolova, V., Todorova, V., Stoeva, V. & Topalova, E. (2010). Response of the photosynthetic apparatus and male gametophyte of pepper plants (Capsicum annuum L.) to various high temperature regimes. Agricultural Sciences, II(4), 89 - 92, Agricultural University - Plovdiv. https://doi.org/10.22620/agrisci.2010.04.015. Rajametov, S. N., Yang, E. Y., Cho, M. C., Chae, S. Y., Jeong, H. B. & Chae, W. B. (2021). Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci. Rep., 11(1), 14328. https://doi.org/10.1038/s41598-021-93697-5. Rosenzweig, C. A., Iglesias, X. B., Yang, P. R., Epstein, E. & Chivian, E. (2001). Climate change and extreme weather events. Implications for food production, plant diseases and pest. Global Change and Human Health, 2, 90–104. https://doi.org/10.1023/A:1015086831467. Sharma, D. K., Fernandez, J. O., Rosenqvist, E. & Ottosen, C. O. (2014). Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat. J. Plant Physiol., 171, 576-586. https://doi.org/10.1016/j.jplph.2013.09.025. Todorova, V. & Pevicharova, G. (2018). Milkana – new Bulgarian pepper variety (Capsicum annuum L. ser. var. longum Sendt.). Bulgarian Journal of Crop Science, 55(3) 47-53. Vuuren, D. P. V., Meinshausenc, M., Plattnerd, G. K., Joose, F., Strassmanne, K. M. & Smithg, S. J. (2008). Temperature increase of 21st century mitigation scenarios. Proc. Natl. Acad. Sci., 105(40), 15258–15262. https://doi.org/10.1073/pnas.0711129105. Wrobel, J., Mikiciuk, M., Malinowska, K. & Drozd, A. (2010). Physiological reaction of Salix viminalis to stress of anthropogenic origin. Agricultural Sciences, 2(4), 33-36. https://doi.org/10.22620/agrisci.2010.04.004. Zhou, R., Yu, X., Kjær, K. H., Rosenqvist, E., Ottosen, C. O. & Wu, Z. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118, 1-11. https://doi.org/10.1016/j.envexpbot.2015.05.006. Zhou, R., Kjaer, K. H., Rosenqvist, E., Yu, X., Wu, Z. & Ottosen, C. O. (2016). Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. Journal Agronomy & Crop Science, 203, 68–80. https://doi.org/10.1111/jac.12166. Zhou, R., Wu, Z., Wang, X., Rosenqvist, E., Wang, Y., Zhao, T. & Ottosen, C. O. (2018). Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Hortic. Environ. Biotechnol., 59, 499-509. https://doi.org/10.1007/s13580-018-0050-y.
|
|
| Date published: 2024-08-27
Download full text