An integrative approach to developing new tomato varieties with elevated fruit antioxidant content
Bojin Bojinov
, Silviya Vasileva
, Daniela Ganeva
, Vasil Georgiev
, Atanas Pavlov
Abstract: Carotenes have been identified as the most essential carotenoids in the human body, together with lycopene, lutein, and β-cryptoxanthin due to their beneficial antioxidant activities. Because of these properties, we have designed and conducted in 2018-2021 an experiment where various tomato accessions were metabolically profiled for their antioxidant content and other fruit parameters for further usage in crop improvement programs. Same genotypes were phenotyped and profiled with DNA markers to characterize their relative genetic distance. Aggregated data from metabolic and genetic profiling were complemented by the phenotypic data to select for the most promising cross (Pl. karotina × L1116) that was performed and developed into F1 and F2 generations. After phenotyping and genetic profiling of the 104 F2 individuals obtained from that cross, 24 individuals were selected for metabolic profiling for antioxidant contents. In relation to carotenoids accumulated in fully matured fruits the highest lycopene concentration detected in our study was 587.03 µg/g DW, while β-carotene reached 440.29 µg/g DW. Our results support the use of such integrative approach to accelerate tomato breeding when improved metabolic content of the fruits is aimed.
Keywords: antioxidants; breeding; lutein; lycopene; polyphenolics; tomato; β-carotene
Citation: Bojinov, B., Vasileva, S., Ganeva, D., Georgiev, V. & Pavlov, A. (2024). An integrative approach to developing new tomato varieties with elevated fruit antioxidant content. Bulg. J. Agric. Sci., 30(2), 363–374
References: (click to open/close) | Ahmed, A. Y., Aowda, S. A. & Hadwan, M. H. (2021). A validated method to assess glutathione peroxidase enzyme activity. Chemical Papers, 75, 6625-6637. Baldwin, E. A., Goodner, K. & Plotto, A. (2008). Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of food science, 73, S294-S307. Baldwin, E. A., Scott, J. W., Shewmaker, C. K. & Schuch, W. (2000). Flavor Trivia and Tomato Aroma: Biochemistry and Possible Mechanisms for Control of Important Aroma Components. HortScience, 35, 1013-1022. Bedinger, P. A., Chetelat, R. T., McClure, B., Moyle, L. C., Rose, J. K. C., Stack, S. M., van der Knaap, E., Baek, Y. S., Lopez-Casado, G., et al. (2011). Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sexual Plant Reproduction, 24, 171-187. Benzie, I. F. F. & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239, 70-76. Black, H. S., Boehm, F., Edge, R. & Truscott, T. G. (2020). The Benefits and Risks of Certain Dietary Carotenoids that Exhibit both Anti- and Pro-Oxidative Mechanisms-A Comprehensive Review. Antioxidants (Basel), 9. Bocianowski, J., Kozak, M., Liersch, A. & Bartkowiak-Broda, I. (2011). A heuristic method of searching for interesting markers in terms of quantitative traits. Euphytica 181, 89-100. Bojinov, B. M. & Danailov, Z. P. (2009). Applicability of ISSRs for Genotype Identification in a Tomato Breeding Collection. Acta Horticulturae, 830, 63-70. Borel, P. (2003). Factors affecting intestinal absorption of highly lipophilic food microconstituents (fat-soluble vitamins, carotenoids and phytosterols). Clinical Chemistry and Laboratory Medicine, 41, 979-94. Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., Boronat, A., Angosto, T., Botella, M. A., et al. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128, 2019-2035. Çolak, N. G., Eken, N. T., Ülger, M., Frary, A. & Doğanlar, S. (2020). Exploring wild alleles from Solanum pimpinellifolium with the potential to improve tomato flavor compounds. Plant Science, 298, 110567. Drincovich, M. F., Voll, L. M. & Maurino, V. G. (2016). Editorial: On the Diversity of Roles of Organic Acids. Frontiers in Plant Science, 7. Frary, A., Xu, Y., Liu, J., Mitchell, S., Tedeschi, E. & Tanksley, S. (2005). Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theoretical and Applied Genetics, 111, 291-312. Gago, C., Drosou, V., Paschalidis, K., Guerreiro, A., Miguel, G., Antunes, D. & Hilioti, Z. (2017). Targeted gene disruption coupled with metabolic screen approach to uncover the LEAFY COTYLEDON1-LIKE4 (L1 L4) function in tomato fruit metabolism. Plant Cell Reports, 36, 1065-1082. Georgieva, L., Мarchev, A., Ivanov, I., Ganeva, D., Bojinov, B. & Pavlov, A. (2013). Improved HPLC methods for determination of carotenoids and tocopherols in different varieties of tomatoes. Food Science, Engineering and Technologies, 60, 632–637. Gonias, E. D., Ganopoulos, I., Mellidou, I., Bibi, A. C., Kalivas, A., Mylona, P. V., Osanthanunkul, M., Tsaftaris, A., Madesis, P. & Doulis, A. G. (2019). Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genetic Resources and Crop Evolution, 66, 1295-1309. Ivanov, I., Vrancheva, R., Marchev, A., Petkova, N., Aneva, I., Denev, P., Georgiev, V. & Pavlov, A. (2014). Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. International Journal of Current Microbiology and Applied Sciences, 3, 296-306. Ivanova, B. & Bojinov, B. (2009). Identification of QTLs for fiber quality in a Bulgarian cotton breeding collection. Genetics and Breeding, 38, 55-60. Jamali, S. H., Cockram, J. & Hickey, L. T. (2019). Insights into deployment of DNA markers in plant variety protection and registration. Theoretical and Applied Genetics, 132, 1911-1929. Kochieva, E. Z., Ryzhova, N. N., Khrapalova, I. A. & Pukhalskyi, V. A. (2002). Genetic Diversity and Phylogenetic Relationships in the Genus Lycopersicon (Tourn.) Mill. as Revealed by Inter-Simple Sequence Repeat (ISSR) Analysis. Russian Journal of Genetics, 38, 958-966. Li, S., He, Y., Li, L., Li, D. & Chen, H. (2022). New insights on the regulation of anthocyanin biosynthesis in purple Solanaceous fruit vegetables. Scientia Horticulturae, 297, 110917. Liu, W., Ye, Q., Jin, X., Han, F., Huang, X., Cai, S. & Yang, L. (2016). A spontaneous bud mutant that causes lycopene and β-carotene accumulation in the juice sacs of the parental Guanxi pummelo fruits (Citrus grandis (L.) Osbeck). Scientia Horticulturae, 198, 379-384. Miura, K., Sato, A., Shiba, H., Kang, S., Kamada, H. & Ezura, H. (2012). Accumulation of antioxidants and antioxidant activity in tomato, Solanum lycopersicum, are enhanced by the transcription factor SlICE1. Plant Biotechnology, 29, 261-269. Motti, R. (2021). The Solanaceae Family: Botanical Features and Diversity. In "The Wild Solanums Genomes" (D. Carputo, R. Aversano and M. R. Ercolano, eds.), 1-9. Springer International Publishing, Cham. Ohyama, A., Shirasawa, K., Matsunaga, H., Negoro, S., Miyatake, K., Yamaguchi, H., Nunome, T., Iwata, H., Fukuoka, H. & Hayashi, T. (2017). Bayesian QTL mapping using genome-wide SSR markers and segregating population derived from a cross of two commercial F1 hybrids of tomato. Theoretical and Applied Genetics, 130, 1601-1616. Orchard, C. J., Cooperstone, J. L., Gas-Pascual, E., Andrade, M. C., Abud, G., Schwartz, S. J. & Francis, D. M. (2021). Identification and assessment of alleles in the promoter of the Cyc-B gene that modulate levels of β-carotene in ripe tomato fruit. Plant Genome, 14. Osei, M. K., Prempeh, R., Adjebeng-Danquah, J., Opoku, J. A., Danquah, A., Danquah, E., Blay, E. & Adu-Dapaah, H. (2018). Marker-Assisted Selection (MAS): A Fast-Track Tool in Tomato Breeding. In "Recent Advances in Tomato Breeding and Production" (N. Seloame Tatu and D. Agyemang, eds.). IntechOpen, Rijeka. Otify, A. M., Ibrahim, R. M., Abib, B., Laub, A., Wessjohann, L. A., Jiang, Y. & Farag, M. A. (2023). Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC–MS, and UV–Vis in relation to antioxidant effects as analyzed using molecular networking and chemometrics. Food Chemistry, 417, 135866. Özyürek, M., Güçlü, K. & Apak, R. (2011). The main and modified CUPRAC methods of antioxidant measurement. Trends in Analytical Chemistry, 30, 652-664. Park, Y. H. & Westclair, M. (2004). Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome, 47, 510-518. Reif, J. C., Hamrit, S., Heckenberger, M., Schipprack, W., Peter Maurer, H., Bohn, M. & Melchinger, A. E. (2005). Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theoretical and Applied Genetics, 111, 906-913. Reyes-Valdés, M. H., Santacruz-Varela, A., Martínez, O., Simpson, J., Hayano-Kanashiro, C. & Cortés-Romero, C. (2013). Analysis and Optimization of Bulk DNA Sampling with Binary Scoring for Germplasm Characterization. PLOS ONE, 8, e79936. Sato, S., Tabata, S., Hirakawa, H., Asamizu, E., Shirasawa, K., Isobe, S., Kaneko, T., Nakamura, Y., Shibata, D., et al. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485, 635-641. Schweiggert, R. M., Kopec, R. E., Villalobos-Gutierrez, M. G., Högel, J., Quesada, S., Esquivel, P., Schwartz, S. J. & Carle, R. (2014). Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. British Journal of Nutrition, 111, 490-498. Sharma, O. P. & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113, 1202-1205. Shirasawa, K., Asamizu, E., Fukuoka, H., Ohyama, A., Sato, S., Nakamura, Y., Tabata, S., Sasamoto, S., Wada, T., et al. (2010). An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theoretical and Applied Genetics, 121, 731-739. Shirasawa, K. & Hirakawa, H. (2013). DNA marker applications to molecular genetics and genomics in tomato. Breeding Science, 63, 21-30. Song, Y., Teakle, G. & Lillywhite, R. (2023). Unravelling effects of red/far-red light on nutritional quality and the role and mechanism in regulating lycopene synthesis in postharvest cherry tomatoes. Food Chemistry, 414, 135690. Su, X., Wang, B., Geng, X., Du, Y., Yang, Q., Liang, B., Meng, G., Gao, Q., Yang, W., et al. (2021). A high-continuity and annotated tomato reference genome. BMC Genomics, 22, 1-12. Suliman-Pollatschek, S., Kashkush, K., Shats, H., Hillel, J. & Lavi, U. (2002). Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cellular and Molecular Biology Letters, 7, 583-97. Tanksley, S. D. & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277, 1063-1066. Tieman, D., Zhu, G., Resende, M. F. R., Lin, T., Nguyen, C., Bies, D., Rambla, J. L., Beltran, K. S. O., Taylor, M., et al. (2017). A chemical genetic roadmap to improved tomato flavor. Science, 355, 391-394. Todorovska, E., Ivanova, A., Ganeva, D., Pevicharova, G., Molle, E., Bojinov, B., Radkova, M. & Danailov, Z. (2014). Assessment of genetic variation in Bulgarian tomato (Solanum lycopersicum L.) genotypes, using fluorescent SSR genotyping platform. Biotechnology & Biotechnological Equipment, 28, 68-76. Vrancheva, R., Stoyanova, M., Mihaylova, D., Aneva, I., Deseva, I., Petkova, N., Ivanov, I. & Pavlov, A. (2019). Polyphenol profile and antioxidant activity of wild growing populations of Nectaroscordum siculum ssp. bulgaricum (Janka) Stearn in Bulgaria. International Food Research Journal, 26, 1635-1640. Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244. Wu, Y., Yuan, Y., Jiang, W., Zhang, X., Ren, S., Wang, H., Zhang, X. & Zhang, Y. (2022). Enrichment of health-promoting lutein and zeaxanthin in tomato fruit through metabolic engineering. Synthetic and Systems Biotechnology, 7, 1159-1166. Yang, J., Liang, B., Zhang, Y., Liu, Y., Wang, S., Yang, Q., Geng, X., Liu, S., Wu, Y., et al. (2022). Genome-wide association study of eigenvectors provides genetic insights into selective breeding for tomato metabolites. BMC Biology, 20, 1-16. Yin, L., Liu, J.-X., Tao, J.-P., Xing, G.-M., Tan, G.-F., Li, S., Duan, A.-Q., Ding, X., Xu, Z.-S. & Xiong, A.-S. (2020). The gene encoding lycopene epsilon cyclase of celery enhanced lutein and β-carotene contents and confers increased salt tolerance in Arabidopsis. Plant Physiology and Biochemistry, 157, 339-347. Zhen, J., Villani, T. S., Guo, Y., Qi, Y., Chin, K., Pan, M.-H., Ho, C.-T., Simon, J. E. & Wu, Q. (2016). Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chemistry, 190, 673-680. Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., Freschi, L., Voytas, D. F., Kudla, J. & Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. Nature Biotechnology, 36, 1211-1216. Zunjare, R. U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H. S., Thirunavukkarasu, N., Saha, S. & Gupta, H. S. (2017). Influence of rare alleles of β-carotene hydroxylase and lycopene epsilon cyclase genes on accumulation of provitamin A carotenoids in maize kernels. Plant Breeding, 136, 872-880.
|
|
| Date published: 2024-04-26
Download full text