Potential of nitrogen-fixing purple non-sulfur bacteria isolated from acid sulfate soil in improvements of soil property, nutrient uptake, and yield of pineapple (Ananas comosus L. Merrill) under acidic stress
Tran Ngoc Huu, Bui The Vinh, Le Chau Tu, Do Thi Xuan, Nguyen Quoc Khuong
Abstract: The study was aimed to assess the potency of nitrogen (N)-fixing purple non-sulfur bacteria (NF-PNSB) on ameliorating soil quality, N uptake, and yield of pineapple in acid sulfate soil. The experiment, following a completely randomized block design, had two factors: (i) supplementation of biofertilizers containing the NF-PNSB (No applied bacteria, Rhodobacter sphaeroides W15, W39, and a mixture of both W15 and W39) and (ii) levels of N fertilizer [0, 50, 75, and 100% N of recommended fertilizer formula (RFF)]. Results demonstrated that supplying biofertilizers containing the mixture of both W15 and W39 increased the values of pHH2O and NH4 +, and decreased the values of EC, Al3+, and Fe2+ at a soil depth of 0–20 cm, in comparison with the no supplied biofertilizers, by 15.8, 39.9, 26.9, 17.8, and 52.9%, respectively. Applying biofertilizers enhanced the total N uptake by 28.9%, resulting in greater growth and a 22.9% increase in pineapple yield, in comparison with the no biofertilizers supplied treatments. Supplying the two strains W15 and W39 not only contributed to reducing 25% N of RFF but also preserved the pineapple yield, compared to the fertilizing 100% N of RFF. Both W15 and W39 are potent for use as crop yield enhancers.
Keywords: acid sulfate soil; pineapple; purple nonsulfur bacteria; Rhodobacter sphaeroides
Citation: Tran Ngoc Huu, Bui The Vinh, Le Chau Tu, Do Thi Xuan & Nguyen Quoc Khuong (2024). Potential of nitrogen-fixing purple non-sulfur bacteria isolated from acid sulfate soil in improvements of soil property, nutrient uptake, and yield of pineapple (Ananas comosus L. Merrill) under acidic stress. Bulg. J. Agric. Sci., 30(2), 234–246
References: (click to open/close) | Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y. & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12, 628379. Ali, M. M., Hashim, N., Abd Aziz, S. & Lasekan, O. (2020). Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Research International, 137, 109675. Angulo, J., Martínez-Salgado, M. M., Ortega-Blu, R. & Fincheira, P. (2020). Combined effects of chemical fertilization and microbial inoculant on nutrient use efficiency and soil quality indicators. Scientia Agropecuaria, 11(3), 375-380. Barros, B. G. D. F., Freitas, A. D. S. D., Tabosa, J. N., Lyra, M. D. C. C. P. D., Mergulhão, A. C. D. E. S., Silva, A. F. D., Oliveira, W. D. S., Júnior, P. I. F. & Sampaio, E. V. D. S. B. (2020). Biological nitrogen fixation in field-grown sorghum under different edaphoclimatic conditions is confirmed by N isotopic signatures. Nutrient Cycling in Agroecosystems, 117, 93-101. Bonomo, R., Zucoloto, M., de Souza, J. M., de Paula Magalhães, A. M., de Souza Baldotto, P. H. & Campanharo, A. (2020). Production and quality of’ Pérola’ pineapple under fertigation. Emirates Journal of Food and Agriculture, 32(2), 109-116. Chai, R., Ye, X., Ma, C., Wang, Q., Tu, R., Zhang, L. & Gao, H. (2019). Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance and Management, 14(1), 1-10. Christ, B. & Hörtensteiner, S. (2014). Mechanism and significance of chlorophyll breakdown. Journal of Plant Growth Regulation, 33, 4-20. Cui, J., Yuan, X., Zhang, Q., Zhou, J., Lin, K., Xu, J. & Chen, Y. (2021). Nutrient availability is a dominant predictor of soil bacterial and fungal community composition after nitrogen addition in subtropical acidic forests. PLoS One, 16(2), e0246263. Farhana, J. A., Shamshuddin, J., Fauziah, C. I., Husni, M. H. A. & Panhwar, Q. A. (2017). Enhancing the fertility of an acid sulfate soil for rice cultivation using lime in combination with bio-organic fertilizer. Pakistan Journal of Botany, 49(5), 1867-1875. Guzman, I., Hamby, S., Romero, J., Bosland, P. W. & O’Connell, M. A. (2010). Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Science, 179(1-2), 49-59. Han, J., Shi, J., Zeng, L., Xu, J. & Wu, L. (2015). Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environmental Science and Pollution Research, 22, 2976-2986. Hidayat, A. R. & Fahmi, A. (2020). Impact of land reclamation on acid sulfate soil and its mitigation. In BIO Web of Conferences, 20, 01002. EDP Sciences. Horwitz, W. (2010). Official methods of analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs/edited by William Horwitz. Gaithersburg (Maryland): AOAC International, 1997. Huu, T. N., Giau, T. T. N., Ngan, P. N., Van, T. T. B. & Khuong, N. Q. (2022). Potential of phosphorus solubilizing purple nonsulfur bacteria isolated from acid sulfate soil in improving soil property, nutrient uptake, and yield of pineapple (Ananas comosus L. Merrill) under acidic stress. Applied and Environmental Soil Science, 2022, Article ID 8693479. Ikhwani, Afza, H., Yuriyah, S. & Waluyo. (2022). Effect of nitrogen fixation and phosphate solubilizing bacteria on growth and yield of lowland rice in different soil type. In AIP Conference Proceedings, 2462(1), 060003. AIP Publishing LLC. Itle, R. A. & Kabelka, E. A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). Hort Science, 44(3), 633-637. Kang, S. M., Imran, M., Shaffique, S., Kwon, E. H., Park, Y. S. & Lee, I. J. (2022). Growth and Photosynthetic Characteristics of Sesame Seedlings with Gibberellin-Producing Rhodobacter sphaeroides SIR03 and Biochar. International Journal of Plant Biology, 13(3), 257-269. Khuong, N. Q., Huu, T. N., Nhan, T. C., Tran, H. N., Tien, P. D., Xuan, L. N. T. & Kantachote, D. (2021). Two strains of Luteovulum sphaeroides (purple nonsulfur bacteria) promote rice cultivation in saline soils by increasing available phosphorus. Rhizosphere, 20, 100456. Khuong, N. Q., Kantachote, D., Dung, N. T. T., Huu, T. N., Thuc, L. V., Thu, L. T. M., Quang, L. T., Xuan, D. T., Nhan, T. C., Tien, P. D. & Xuan, L. N. T. (2023). Potential of potent purple nonsulfur bacteria isolated from rice-shrimp systems to ameliorate rice (Oryza sativa L.) growth and yield in saline acid sulfate soil. Journal of Plant Nutrition, 46(3), 473-494. Khuong, N. Q., Kantachote, D., Thuc, L. V., Huu, T. N., Nhan, T. C., Nguyen, P. C., Thu, L. T. M., Van, T. B., Xuan, N. T. T., Xuan D. T. & Xuan, L. N. T. (2022c). Use of potent acid resistant strains of Rhodopseudomonas spp. in Mn-contaminated acidic paddies to produce safer rice and improve soil fertility. Soil and Tillage Research, 221, 105393. Khuong, N. Q., Kantachote, D., Nookongbut, P., Onthong, J., Xuan, L. N. T. & Sukhoom, A. (2020b). Mechanisms of acid-resistant Rhodopseudomonas palustris strains to ameliorate acidic stress and promote plant growth. Biocatalysis and Agricultural Biotechnology, 24, 101520. Khuong, N. Q., Kantachote, D., Onthong, J. & Sukhoom, A. (2017). The potential of acid-resistant purple nonsulfur bacteria isolated from acid sulfate soils for reducing toxicity of Al3+ and Fe2+ using biosorption for agricultural application. Biocatalysis and Agricultural Biotechnology, 12, 329-340. Khuong, N. Q., Kantachote, D., Thuc, L. V., Nookongbut, P., Xuan, L. N. T., Nhan, T. C., Xuan, N. T. T. & Tantirungkij, M. (2020a). Potential of Mn 2+-resistant purple nonsulfur bacteria isolated from acid sulfate soils to act as bioremediators and plant growth promoters via mechanisms of resistance. Journal of Soil Science and Plant Nutrition, 20, 2364-2378. Khuong, N. Q., Quang. L. T., Thuc, L. V., Huu, T. N., Thu, L. T. M., Van, T. B., Xuan D. T., Hue, N. H., Le, N. T. T., Tien, P. D., Nhan, T. C., Xuan, L. T. T. & Xuan, N. T. T. (2022a). Potential of endophytic phosphorus-solubilizing bacteria to improve soil fertility, P uptake, and yield of maize (Zea mays L.) cultivated in alluvial soil in dikes in Vietnam. Bulgarian Journal of Agricultural Science, 28(2), 217-228. Khuong, N. Q., Thuc, L. V., Duc, H. H., Huu, T. N., Van, T. T. B., Thu, L. T. M., Quang, L. T., Xuan, D. T., Nhan, T. C. & Xuan, L. N. T. (2022). Potential of N2-fixing endophytic bacteria isolated from maize roots as biofertiliser to enhance soil fertility, N uptake, and yield of ‘Zea mays’ L. cultivated in alluvial soil in dykes. Australian Journal of Crop Science, 16(4), 461-470. Khuong, N. Q., Kantachote, D., Onthong, J., Xuan, L. N. T. & Sukhoom, A. (2018). Enhancement of rice growth and yield in actual acid sulfate soils by potent acid-resistant Rhodopseudomonas palustris strains for producing safe rice. Plant and soil, 429, 483-501. Leghari, S. J., Wahocho, N. A., Laghari, G. M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K. & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209-219. Li, H. B., Singh, R. K., Singh, P., Song, Q. Q., Xing, Y. X., Yang, L. T. & Li, Y. R. (2017). Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Frontiers in Microbiology, 8, 1268. Lobo, M. G. & Paull, R. E. (Eds.). (2017). Handbook of pineapple technology: production, postharvest science, processing and nutrition. John Wiley & Sons. Malusà, E., Pinzari, F. & Canfora, L. (2016). Efficacy of biofertilizers: challenges to improve crop production. Microbial Inoculants in Sustainable Agricultural Productivity, 2: Functional Applications, 17-40. Miller, J. O. (2016). Soil pH and Nutrient Availability. University of Maryland. FS-1054. Nguyen, K. Q., Kantachote, D., Onthong, J. & Sukhoom, A. (2018). Al3+ and Fe2+ toxicity reduction potential by acid-resistant strains of Rhodopseudomonas palustris isolated from acid sulfate soils under acidic conditions. Annals of Microbiology, 68(4), 217-228. Nookongbut, P., Kantachote, D., Khuong, N. Q., Sukhoom, A., Tantirungkij, M. & Limtong, S. (2019). Selection of acid-resistant purple nonsulfur bacteria from peat swamp forests to apply as biofertilizers and biocontrol agents. Journal of Soil Science and Plant Nutrition, 19, 488-500. Nunkaew, T., Kantachote, D., Kanzaki, H., Nitoda, T. & Ritchie, R. J. (2014). Effects of 5 aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electronic Journal of Biotechnology, 17(1), 4. Nunkaew, T., Kantachote, D., Nitoda, T. & Kanzaki, H. (2012). The use of rice straw broth as an appropriate medium to isolate purple nonsulfur bacteria from paddy fields. Electronic Journal of Biotechnology, 15(6), 7. Okamoto, T., Shinjo, R., Nishihara, A., Uesaka, K., Tanaka, A., Sugiura, D. & Kondo, M. (2021). Genotypic variation of endophytic nitrogen-fixing activity and bacterial flora in rice stem based on sugar content. Frontiers in Plant Science, 1610. Osman, K. T. (2013). Plant nutrients and soil fertility management. In: Soils. 129-159. Springer. Dordrecht. Pérez-Rodriguez, M. M., Piccoli, P., Anzuay, M. S., Baraldi, R., Neri, L., Taurian, T., Ureche, M. A. L., Segura, D. M. & Cohen, A. C. (2020). Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific Reports, 10(1), 15642. Płaza, A., Niewiadomska, A., Górski, R., Rudziński, R. & Rzążewska, E. (2022). The effect of the nitrogen-fixing bacteria and companion red clover on the total protein content and yield of the grain of spring barley grown in a system of organic agriculture. Agronomy, 12(7), 1522. Py, C., Lacoeuilhe, J. J. & Teisson, C. (1987). The pineapple: cultivation and uses. Paris: GP Maisonneuve & Larose. Rosenblueth, M., Ormeño-Orrillo, E., López-López, A., Rogel, M. A., Reyes-Hernández, B. J., Martínez-Romero, J. C., Reddy, P. M. & Martínez-Romero, E. (2018). Nitrogen fixation in cereals. Frontiers in Microbiology, 9, 1794. Sainju, U. M., Ghimire, R. & Pradhan, G. P. (2019). Nitrogen fertilization I: Impact on crop, soil, and environment. Nitrogen Fixat, 9, 1-9. Sakpirom, J., Kantachote, D., Nunkaew, T. & Khan, E. (2017). Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in Microbiology, 168(3), 266-275. Saranraj, P., Jayaprakash, A., Devi, V. D., Al-Tawaha, A. R. M. & Al-Tawaha, A. R. (2021). Isolation and nitrogen fixing efficiency of Gluconacetobacter diazotrophicus associated with sugarcane: A review. In: IOP Conference Series: Earth and Environmental Science, 788(1), 012171. IOP Publishing. Singh, M., Singh, D., Gupta, A., Pandey, K. D., Singh, P. K. & Kumar, A. (2019). Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In: PGPR Amelioration in Sustainable Agriculture, 41-66, Woodhead Publishing. Singh, R. K., Singh, P., Li, H. B., Song, Q. Q., Guo, D. J., Solanki, M. K., Verma, K. K., Malviya, M. K., Song, X. P., Lakshmanan, P., Yang, L. T. & Li, Y. R. (2020). Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology, 20, 1-21. Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. & Sumner, M. E. (1996) (Eds.). Methods of soil analysis. Part 3-Chemical methods. SSSA Book Ser. 5.3. SSSA, ASA, Madison, WI. Timmusk, S., Behers, L., Muthoni, J., Muraya, A. & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49. Trivedi, P., Schenk, P. M., Wallenstein, M. D. & Singh, B. K. (2017). Tiny microbes, big yields: enhancing food crop production with biological solutions. Microbial Biotechnology, 10(5), 999-1003. Vijayalakshmi, V., Pradeep, S., Manjunatha, H., Krishna, V. & Jyothi, V. (2020). The impact of nitrogen fixers and phosphate solubilizing microbes on sorghum (Sorghum bicolor) yield. Current Biotechnology, 9(3), 198-208. Wang, J., Li, R., Zhang, H., Wei, G. & Li, Z. (2020). Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 20, 1-12. Wen, A., Havens, K. L., Bloch, S. E., Shah, N., Higgins, D. A., Davis-Richardson, A. G., Sharon, J., Rezaei, F., Mohiti-Asli, M., Johnson, A., Abud, G., Ane, G. M., Maeda, J., Infante, V., Gottlieb, S. S., Lorigan, J. G., Williams, L. , Horton, A., McKellar, M. , Soriano, D., Caron, Z., Elzinga, H., Graham, A., Clark, R., Mak, S. M., Stupin, L., Robinson, A., Hubbard, N., Broglie, R., Tamsir, A. & Temme, K. (2021). Enabling biological nitrogen fixation for cereal crops in fertilized fields. ACS Synthetic Biology, 10(12), 3264-3277. Wongkantrakorn, N., Sunohara, Y. & Matsumoto, H. (2009). Mechanism of growth amelioration of NaCl-stressed rice (Oryza sativa L.) by δ-aminolevulinic acid. Journal of Pesticide Science, 34(2), 89-95. Wongkiew, S., Chaikaew, P., Takrattanasaran, N. & Khamkajorn, T. (2022). Evaluation of nutrient characteristics and bacterial community in agricultural soil groups for sustainable land management. Scientific Reports, 12(1), 7368. Woo, J., Song, S., Kang, S. & Jeon, E. C. (2021). Study on Enhanced Methods for Calculating NH3 Emissions from Fertilizer Application in Agriculture Sector. International Journal of Environmental Research and Public Health, 18(21), 11551. Wu, J., Luo, Q., Liu, J., Chen, X. & Liu, L. (2018). Enhanced pyruvate production in Candida glabrata by overexpressing the CgAMD1 gene to improve acid tolerance. Biotechnology Letters, 40, 143-149. Xa, L. T., Nghia, N. K. & Tecimen, H. B. (2022). Environmental factors modulating indole-3-acetic acid biosynthesis by four nitrogen fixing bacteria in a liquid culture medium. Environment and Natural Resources Journal, 20(3), 279-287. Zhalnina, K., Dias, R., de Quadros, P. D., Davis-Richardson, A., Camargo, F. A., Clark, I. M., McGrath, S. P., Hirsch, P. R. & Triplett, E. W. (2015). Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 69(2), 395-406. Zheng, Y., Wang, J., Bai, X., Chang, Y., Mou, J., Song, J. & Wang, M. (2018). Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA. Applied Microbiology and Biotechnology, 102, 6493-6502. |
|
| Date published: 2024-04-26
Download full text