Mutation breeding in underutilized cereal crops: a review
Ramadhani Kurnia Adhi, Warid Ali Qosim, Meddy Rachmadi, Farida Damayanti
Abstract: Mutation breeding is a method of plant breeding using physical and chemical mutagenic induction to generate genetic diversity. This approach is taken when the genetic diversity of the desired trait is narrow. Mutation breeding in major cereal crops such as rice, wheat, and corn have been widely carried out, but underutilized cereal crops are rarely carried out. The purpose of this literature review was to discuss the development and techniques of mutation breeding in underutilized cereal crops i.e. sorghum, millet, and adlay. Article searches were carried out on various research articles and review articles. Mutation breeding has been widely carried out, especially on sorghum and millet, but little has been done on adlay. Mutagens that were widely used were gamma-ray irradiation and EMS. The TILLING approach was used to speed up the molecular selection process. The Rapid Cycling Method was also used to accelerate the purification process of mutant lines in each generation. Mutation breeding produces a number of mutant varieties in underutilized cereal crops. Several techniques can be used to speed up the breeding process.
Keywords: adlay; millet; mutation breeding; sorghum; underutilized cereal
Citation: Adhi, R. K., Qosim, W. A., Rachmadi, M. & Damayanti, F. (2024). Mutation breeding in underutilized cereal crops: a review. Bulg. J. Agric. Sci., 30(1), 81–87.
References: (click to open/close) | Addai, I. K. (2018). Response of pearl millet (Pennicetum glaucum L.) to experimental mutagenesis in the guinea savannah agro-ecology of Ghana. Ghana Journal of Development Studies, 15(1), 22-36. Addai, I. K. & Salifu, B. (2016). Selection of mutants with improved growth and total grain yield in the M2 generation of pearl millet (Pennicetum glaceum L.) in the northern region of Ghana. Journal of Agronomy, 15(2), 88-93. Ambavane, A. R., Sawardekar, S. V., Sawantdesai, S. A. & Gokhale, N. B. (2015). Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). Journal of Radiation Research and Applied Sciences, 8, 120-125. https://doi.org/10.1016/j.jrras.2014.12.004 Ambli, K., Mullainathan, L. & Natarajan, S. (2016). Mutagenic effectiveness and efficiency of Gamma rays and Ethyl Methane Sulphonate in pearl millet (Pennisetum typhoides (Burn.F.) Stapf. and CEHubb.) var.CO (cu)-9. Academia Journal of Agricultural Research, 4(2), 041-044. Anittha, I. & Mullainathan, L. (2018). Chlorophyll and morphological mutations induced by chemical mutagens EMS, DES in (Setaria italic (L.)Beauv.) var. CO(Te)7 in M2 generation. International Journal of Scientific Research in Biological Sciences, 5(6), 61-65. Aradilla, A. R. (2016). Phased planting: determining the best time to plant adlay (Coix lacryma-jobi L.) in Southern Bukidnon, Mindanao, Philippines. International Journal of Education and Research, 4(5), 419-430. Arago, J. A., Engle, L. M. & dela Vina, C. (1997). Cytogenetics of job's tears Coix lacryma-jobi Linn. Philipp. J. Crop Science, 22(2), 64-73. Ardie, S. W., Khumaida, N., Nur, A. & Fauziah, N. (2015). Early identification of salt tolerant foxtail millet (Setaria italica L. Beauv). Procedia Food Science, 3, 303-312. https://doi.org/10.1016/j.profoo.2015.01.033 Aviya, K. & Mullainathan, L. (2018). Studies on effect of induced mutagenesis on finger millet (Eleusine coracana (L.) Gaertn.) var-co 13 in M1 generation. Horticultural Biotechnology Research, 4, 23-25. https://dx.doi.org/10.25081/hbr.2018.v4.3485 Bhave, K. G., Dalvi, V. V., Thaware, B. L., Mahadik, S. G., Kasture, M. C. & Desai, S. S. (2016). Mutagenesis in proso millet (Panicum miliaceum L.). International Journal of Science and Research, 5(3), 1635-1638. Blomstedt, C. K., Gleadow, R. M., O'Donnell, N., Naur, P., Jensen, K., Laursen, T., Olsen, C. E., Stuart, P., Hamill, J. D., Møller, B. L. & Neale, A. D. (2012). A combined biochemical screen and TILLING approach identifying mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnology Journal, 10, 54-66. https://dx.doi.org/10.1111/j.1467-7652.2011.00646.x Chen, J., Xin, Z. & Laza, H. (2019). Registration of BTx623dw5, a new sorghum dwarf mutant. Journal of Plant Registrations, 13, 254-257. https://dx.doi.org/10.3198/jpr2018.09.0058crgs Dahlberg, J., Berenji, J., Sikora, V. & Latković, D. (2011). Assessing sorghum [Sorghum bicolor (L) Moench] germplasm for new traits: food, fuels & unique uses. Maydica, 56(1750), 85-92. de Vries, H. (1901). The Mutation Theory. Experiments and Observations on the Origin of Species in the Plant Kingdom. Verlag Vorveit & Com., Leipzig. https://archive.org/details/diemutationstheo01vrie/page/n3/mode/2up?view=theater. (De). de Wet, J. (1978). Systematic and evolution of sorghum sect. sorghum (graminae). American Journal of Botany, 65(4), 477-484. Diao, X. (2017). Production and genetic improvement of minor cereals in China. The Crop Journal, 13, 103-114. https://dx.doi.org/10.1016/j.cj.2016.06.004 Doust, A. N., Brutnell, T. P., Upadhyaya, Y. Y. & Van Eck, J. (2019). Editorial: Setaria as a model genetic system to accelerate yield increases in cereals, forage crops, and bioenergy grasses. Frontiers in Plant Science, 10, 1-2. https://dx.doi.org/10.3389/fpls.2019.01211 Emendack, Y., Xin, Z., Hayes, C., Burow, G., Sattler, S., Bean, S. & Smolensky, D. (2022 ). Registration of three new bmr12 sorghum mutant from an ethyl methane sulfonate–induced BTx623 mutant population. Journal of Plant Registrations, 1-6. https://dx.doi.org/10.1002/plr2.20219 Feng, L., Zhao, Y., Zhang, Z., Zhang, S., Zhang, H., Yu, M. & Ma, Y. (2020). The edible and medicinal value of Coix lacryma-jobi and key cultivation techniques for high and stable yield. Natural Resources, 11, 569-575. https://dx.doi.org/10.4236/nr.2020.1112034 Francis, N., Rajasekaran, R., Krishnamoorthy, I., Muthurajan, R., Thiyagarajan, C. & Alaragswamy, S. (2022). Gamma irradiation to induce beneficial mutants in proso millet (Panicum miliaceum L.): an underutilized food crop. International Journal of Radiation Biology, 10, 1-12. https://dx.doi.org/10.1080/09553002.2022.2024292 Gager, C. S. & Blakeslee, A. F. (1927). Chromosome and gene mutations in datura following exposure to radium rays. Proceedings of the National Academy of Sciences, 13(2), 75-79. Ganapathy, K. N., Patro, T. S. S. K., Palanna, K. B., Das, I. K., Elangovan, M., Prashant, B., Venkatesha, S. C., Anuradha, N., Nagaraja, T. E. & Tonapi, V. A. (2021). Development of improved mutants for grain yield and related traits in finger millet (Eleusine coracana L. Gaertn) through gamma mutagenesis. International Journal of Plant and Soil Science, 33(18), 225-235. Ghasemi, A., Ghasemi, M. M. & Pessarakli, M. (2012). Yield and yield components of various grain sorghum cultivars grown in an arid region. Journal of Food, Agriculture and Environment, 10(1), 455-458. Gitz III, D. C., Liu-Gitz, L., Xin, Z., Baker, J. T., Payton, P. & Lascano, R. J. (2017). Description of a novel allelic “thick leafed” mutant of sorghum. American Journal of Plant Sciences, 8(12), 2956–2965. https://dx.doi.org/10.4236/ajps.2017.812200 Gopinath, L.R., Saranaya, M., Archaya, S. & Bhuvaneswari, R. (2017). Genetic improvement of foxtail millet from Kolli hills landraces through chemical mutation. Indian Journal of Applied Research, 7(11), 304-306. Human, S., Sihono & Indriatama, W. M. (2020). Sorghum improvement program by using mutation breeding in Indonesia. IOP Conf. Series: Earth and Environmental Science, 484(012003), 1-7. https://dx.doi.org/10.1088/1755-1315/484/1/012003 IAEA (2022). Mutant Variety Database. International Atomic Energy Agency. Retrieved May 06, 2022, from http://mvd.iaea.org Indriatama, W. M. & Anisiyah (2020). Accelerated purification of sorghum mutant line by using rapid cycling methods. Journal of Physics: Conference Series, 1436(012028). https://dx.doi.org/10.1088/1742-6596/1436/1/012028 Ishida, M., Kato, M. & Chiba, I. (1995). Breeding process and characteristics of a new job's tear cultivar "hatohikari. Tohoku Agricultural Research, 48, 141-142 (Ja). Jain, S. K. & Banerjee, D. K. (1974). Preliminary observations on the ethnobotany of the genus coix. Economic Botany, 28, 38-42. Jiao, Y., Burke, J., Chopra, R., Burow, G., Chen, J., Wang, B., Hayes, C., Emendack, Y., Ware, D. & Xin, Z. (2016). A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell, 28(7), 1551–1562. https://dx.doi.org/10.1105/tpc.16.00373 Karuppasamy, P. (2015). Overview on millets (Nutric) Trends in Bioscience, 18(3), 3269–3273 Kate, S. M., Desai, S. S., Bhave, S. G., Thorat, B. S. & Bal, C. P. (2018). Mutagene induced variability in proso millet (Panicum miliaceum L.) International Journal of Chemical Studies, 6(5), 13-16. Kato, M., Yamamori, M., Yui, M., Ishida, M., Chiba, I., Okuyama, Y., Toyama, T., Tanosaki, S., Sugawara, S., Endo, T. & Shibata, M. (2007). A new job's-tears cultivar "hatoyutaka". Bulletin of The National Agricultural Research for the Tohoku Region, 107, 43-51. (Ja) Lapuimakuni, S., Khumaida, N. & Ardie, S. W. (2018). Short communication: evaluation of drought tolerance indices for genotype selection of foxtail millet (Setaria italica). Tropical Drylands, 2(2), 37-40. https://dx.doi.org/10.13057/tropdrylands/t020201 Liao, Y. L., Lin, W. S. & Chen, S. Y. (2019). Taichung no. 5: a short plant height with high grain yield job's tears cultivar. HortScience, 54(4), 761–762. https://dx.doi.org/10.21273/HORTSCI13804-18 Liu, L., Duncan, N. A., Chen, X. & Cui, J. (2018). Exploitation of job's tears in paleolithic and neolithic China: methodological problems and solutions. Quaternary International, 1-13. https://dx.doi.org/10.1016/j.quaint.2018.11.019 Mayasti, N. K. I., Iwansyah, A. C., Indriati, A., Ekafitri, R. & Adriana, Y. (2021). Nutritional and physical properties of three varieties of hanjeli (Coix lacryma-jobi) flour for food diversification and application uses. IOP Conference Series: Earth and Environmental Science, 733, 1-7. https://dx.doi.org/10.1088/1755-1315/733/1/012132 Muller, H. (1927). Artificial transmutation of the gene. Science, 66(1699), 84-87. http://dx.doi.org/10.1038/285058b0 Nadeem, F., Ahmad, Z., Hassan, MU, Wang, R., Diao, X. & Li, X. (2020). Adaptation of foxtail millet (Setaria italica L.) to abiotic stresses: a special perspective of responses to nitrogen and phosphate limitations. Front. Plant Sci., 11(187), 1-11. https://dx.doi.org/10.3389/fpls.2020.00187 Nakagawa, H. & Kato, H. (2017). Induced mutations for food and energy security: challenge of inducing unique mutants for new cultivars and molecular research. Bull. NARO, Crop Sci., 1, 33-124. Ning, N., Yuan, X., Dong, S., Wen, Y., Gao, Z., Guo, M. & Guo, P. (2015). Grain yield and quality of foxtail millet (Setaria italica L.) in response to tribenuron-methyl. PLoS ONE, 10(11). https://dx.doi.org/10.1371/journal.pone.0142557 Ramesh, M., Vanniarajan, C., Ravikesavan, Aiyanathan, K. E. A. & Mahendran, P. P. (2019). Mutagenic effectiveness and efficiency in barnyard millet (Echinochloa frumentacea) using physical, chemical and combination of mutagens. Electronic Journal of Plant Breeding, 10(2), 949-956. https://dx.doi.org/10.5958/0975-928X.2019.00122.4 Rao, P. N. (1976). Studies on the occurrence, cytology, fertility and breeding behaviour of aneuploids in induced autotetraploid job's tears. Cytologia, 41(1), 145-152. https://dx.doi.org/10.1508/cytologia.41.145 Sellapillaibanumathi, L., Dhanarajan, A., Raina, A. & Ganesan, A. (2021). Effects of gamma radiation on physio-morphological traits of finger millet (Eleusine coracana (L.) Gaertn.). Plant Science Today, 9(1), 89-95. https://dx.doi.org/10.14719/pst.1142 Shen, G. (2017). Genetic Diversity and Induced Mutation of Job's Tears (Coix lachryma-jobi L.) Thesis. Suranaree University of Technology. Shu, Q. Y., Foster, B. P. & Nakagawa, H. (Eds.). (2011). Plant Mutation Breeding and Biotechnology. International Atomic Energy Agency. Vienna, Austria. Sikora, P., Chawade, A., Larsson, M., Olsson, J. & Olsson, O. (2011). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics, 2011(314829), 1-13. http://dx.doi.org/10.1155/2011/314829 Sun, J., Luu, NS, Chen, Z., Chen, B., Cui, X., Wu, J., Zhang, Z. & Lu, T. (2019). Generation and characterization of a foxtail millet (Setaria italica) mutant library. Frontiers in Plant Science, 10(369). https://dx.doi.org/10.3389/fpls.2019.00369 Tari, I., Laskay, G., Takács, Z. & Poór, P. (2013). Response of sorghum to abiotic stresses: a review. Journal of Agronomy and Crop Science, 199(4). Tollenaar, D. (1938). Investigations on mutation in tobacco, II. Some artificially induced chromosome mutants. Genetica, 20, 285-294. https://dx.doi.org/10.1007/BF01508112 (Nl). USDA (2022a). Sorghum Explorer. Foreign Agricultural Services, US Department of Agriculture. Retrieved May 06, 2022, from https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0459200&sel_year=2021&rankby=Production USDA. (2022b). Millet Explorer. Foreign Agricultural Service, US Department of Agriculture. Retrieved 6 5, 2022, from https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0459100&sel_year=2018&rankby=Production Vasisth, P., Rangaiah, S., Sharma, M., Balar, V. & Chittora, V. (2022). Induced genetic variability and association studies in M4 mutants of finger millet. The Pharma Innovation Journal, 11(4), 670-673. Waghmode, B. D, Sable, P. S, Sonone, N. G. & Burondkar, M. M. (2020). Genetical studies of mutant lines in M3 generation of finger millet (Eleusine coracana (L.) Gaertn). International Journal of Current Microbiology and Applied Sciences, 9(3), 1833-1844. Xin, Z., Huang, J., Smith, A. R., Chen, J., Burke, J., Sattler, S. E. & Zhao, D. (2017). Morphological characterization of a new and easily recognizable nuclear male sterile mutant of sorghum (Sorghum bicolor). PLoS ONE, 12(1), 1-14. https://dx.doi.org/10.1371/journal.pone.0165195 Xin, Z., Wang, M. L., Barkley, N. A., Burow, G., Franks, C., Pederson, G. & Burke, J. (2008). Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biology, 8(103), 1-14. https://dx.doi.org/10.1186/1471-2229-8-103 Xin, Z., Wang, M. L, Burow, G. & Burke, J. (2009). An induced sorghum mutant population suitable for bioenergy research. Bioenerg. Res., 2, 10-16. https://dx.doi.org/10.1007/s12155-008-9029-3
|
|
| Date published: 2024-02-26
Download full text