Endocrine responses to moderate altitude hypoxia in pregnant Ile de France sheep with low or high basal hematocrit levels
Penka Moneva, Ivan Yanchev, Nikola Metodiev
Abstract: The object of the present study was to investigate some hormonal responses to mild hypoxia. Thirty Ile De France ewes were selected according to their hematocrit level and were allocated into 3 groups: low hematocrit (LHct) (hematocrit range - 19.7-27.9%), high hematocrit (HHct) (hematocrit range - 32.0-36.9%) and mean hematocrit (MHct) (hematocrit range - 28.3-29.8%). Immediately after shearing, ewes were transported from the Institute farm (altitude 500 m) to a mountain pasture (altitude 1440 m). Blood samples were taken by jugular venepuncture at the following time points: before transportation (baseline level), on day 7, 20 and 42 after the transport. The traits investigated were blood cortisol, thyroid hormones (T3 and T4), growth hormone, reticulocyte count and lactate. Moderate altitude exposure resulted in significant increase on day 7 in plasma cortisol levels in LHct ewes (P<0.05). Cortisol levels increased significantly on d 20 in HHct and MHct ewes (P<0.05) compared to baseline levels. Thyroxine levels in LHct and MHct ewes were significantly higher on d 7 as compared to baseline levels (P<0.05). Triiodothyronine in LHct and HHct ewes declined significantly at 20 d compared to baseline level. (P<0.05). Growth hormone levels declined significantly in HHct ewes on d 42 as compared to baseline levels (P<0.05), while in LHct and MHct ewes remained unchanged. Corrected reticulocyte count was significantly higher in HHct ewes compared to LHct ewes at 7 d (P<0.05). There was a general trend of a slight decrease in T3 and T4 levels in all ewes at 20 d and 42 d. Blood lactate levels increased significantly in LHct (P<0.001) and HHct ewes (P<0.05) at d 7 compared to baseline levels. Lactate levels on d 20 d and d 42 in LHct ewes and HHcrt ewes declined but remained significantly higher compared to baseline leves (P<0.05). There were significant correlations on day 7 between: GH and T3 (r=0.503; P<0.05); GH and lactate (r=0,574; P<0.01); T3 and lactate (r=0.517); P<0.05). In conclusion, Adaptation of shorn pregnant ewes to moderate altitude hypoxia was associated with a slight decrease in basal metabolism accompanied by a slight increase in lactate level.
Keywords: cortisol; GH; lactate; reticulocytes; sheep; stress; T3; T4
Citation: Moneva, P., Yanchev, I. & Metodiev, N. (2023). Endocrine responses to moderate altitude hypoxia in pregnant Ile de France sheep with low or high basal hematocrit levels. Bulg. J. Agric. Sci.,29(6), 1128–1136.
References: (click to open/close) | Bain, B. J., Bates, I., Laffan, M. A. & Lewis, S. M. (2012). Dacie and Lewis Practical hematology. Chapter 3, 11th ed., Edinburgh, Churchill Livingstone/Elsevier.eBook, ISBN: 9780702069260. Bapata, A., Schippela, N., Shib, X., Jasbib, P., Gub, H., Kalac, M., Sertila, A. & Sharmaa, S. (2021). Hypoxia promotes erythroid differentiation through the development of progenitors and proerythroblasts. Exp. Hematol., 97, 32–46. Bauer, A., Tronche, F., Wessely, O., Kellendonk, C., Reichardt, H. M., Steinlein, P., Schutz, G. & Beug, H. (1999). The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev., 13, 2996–3002. Bloom, S. R., Edwards, A. V., Hardy, R. N., & Silver, M. (1976). Adrenal and pancreatic endocrine responses to hypoxia in the conscious calf. J. Physiol., 261(2), 271–283. Brooks, G. A. (2002). Lactate shuttles in nature. Biochem. Soc. Trans., 30(2), 258–264. Brooks, G. A. (2018). The Science and Translation of Lactate Shuttle Theory. Cell Metab., 27(4), 757–785. Devesa, J., Almengló, C. & Devesa, P. (2016). Multiple effects of growth hormone in the body: Is it really the hormone for growth? Clin. Med. Insights Endocrinol. Diabetes, 9, 47–71. Diesel, D. A., Tucker, A. & Robertshaw, D. (1990). Cold-induced changes in breathing pattern as a strategy to reduce respiratory heat loss. J. Appl. Physiol., 69(6), 1946–1952. Duplain, H., Vollenweider, L., Delabays, A., Nicod, P., Bartsch, P. & Scherrer, U. (1999). Augmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema. Circulation, 99, 1713–1718. Evans, J. V. & Whitlock, J. H. (1964). Genetic Relationship between Maximum Hematocrit Values and Hemoglobin Type in Sheep. Science, 145(3638), 1318. Fiems, L. O. (2012). Double muscling in cattle: genes, husbandry, carcasses and meat. Animals (Basel), 2(3), 472–506. Gilany, K. & Vafakhah, M. (2010). Hypoxia: a Review. Journal of Paramedical Sciences (JPS), 1(2), 43–60. Gilbert-Kawai, E. T., Milledge J. S., Grocott M. P. W. & Martin, D. S. (2014). King of the mountains: Tibetan and Sherpa physiological adaptations for life at high altitude. Physiology (Bethesda), 29(6), 388–402. Giustina, A., Veldhuis, J. (1998). Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev., 19, 717–797. Hainsworth, R., Mark, J. & Drinkhill, M. R.-Ch. (2007). The autonomic nervous system at high altitude. Clin. Auton. Res., 17(1), 13–19. Hermann, R., Daniel, L., Patrick, W., Walton, R. & Petrowskim K, (2019). Effects of psychosocial and physical stress on lactate and anxiety levels. Stress, 22(6), 1–6. Hertzog, R. G., Bicheru, N. S., Popescu, D. M., Calborean, O. & Catrina, A. M. (2021). Hypoxic preconditioning - A nonpharmacological approach in COVID-19 prevention. International Journal of Infectious Diseases, 103, 415–419. Humpeler, E., Scrabal, F. & Bartsch, G. (1980). Influence of exposure to moderate altitude on the plasma concentration of cortisol, aldosterone, renin testosterone and gonadotropins. Eur. J. Appl. Physiol., 17, 167–176. Jørgensen, J. O., Krag, M., Kanaley, J., Møller, J., Hansen, T. K., Møller, N., Christiansen, J. S. & Orskov, H. (2003). Exercise, hormones, and body temperature, regulation and action of GH during exercise. J. Endocrinol. Invest., 26(9), 838-842. Luger, D., Shinder, D., Wolfenson, D. & Yahav, S. (2003). Erythropoiesis regulation during the development of ascites syndrome in broiler chickens: A possible role of corticosterone. J. Anim. Sci., 81, 784–790. Mazzeo, R S., Brooks, G. A., Butterfield, G. E., Podolin, D. A., Wolfel, E. E. & Reeves, J. T. (1995). Acclimatization to high altitude increases muscle sympathetic activity both at rest and during exercise. Am. J. Physiol., 269, 201–207. Mazzeo, R. S., Child, A. & Butterfield, G. E. (2000). Sympathoadrenal responses to submaximal exercise in women after acclimatization to 4000 m. Metabolism, 49, 1036–1042. Mazzeo, R. S., Wolfel, E. E., Butterfield, G. E. & Reeves, J. T. (1994). Sympathetic responses during 21 days at high altitude (4300 m) as determined by urinary and arterial catecholamines. Metabolism, 43, 1226–1232. McArdle, W. D., Katch, F. I., &. Katch, V. L (2010). Exercise at medium and high altitude, In: Exercise Physiology: Nutrition, Energy, and Human Performance, Lippincott Williams & Wilkins, 24, 592–608. Mortola, J. P. & Frappell, P. B. (2000). Ventilatory responses to changes in temperature in mammals and other vertebrates. Annu. Rev. Physiol., 62, 847–874. Palmer, B. F. & Clegg, D. J. (2014). Ascent to altitude as a weight loss method: the good and bad of hypoxia inducible factor activation. Obesity (Silver Spring), 22(2), 311–317. Sawhney, R. C, Chhabra, P. C., Malhotra, A. S., Singh, T., Riar, S. S. & Rai, R. M. (1985). Hormone profiles at high altitude in man. Andrologia, 17, 178–184. Schuler, B., Arras, M., Keller, S., Rettich, A., Lundby, C., Vogel, J. & Gassmann, M. (2010). Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice. Proc Natl Acad Sci U S A., 107(1), 419–423. Semenza, G. L. (2007). Hypoxia-inducible factor 1 (HIF-1) pathway. Science STKE 2007, 407, cm8. Simonides, W. S., Mulcahey, M. A., Redout, E. M., Muller, A., Zuidwijk, M. J., Visser, T. J., Crescenzi, A., da-Silva, W. S., Harney, J., Engel, F. B., Obregon, M. J., Larsen, P. R., Bianco, A. C. & Huang, S. A. (2008). Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. Clin Invest., 118, 975–983. Stainsby, W. N. & Brooks, G. A. (1990). Control of lactic acid metabolism in contracting muscles and during exercise. Exerc. Sport. Sci. Rev., 18, 29–63. Stellaccia, E., Di Noiab, A., Di Baldassarrec, A., Migliacciob, G., Battistinia, A. & Migliaccio, A. R. (2009). Interaction between the glucocorticoid and erythropoietin receptors in human erythroid cells. Experimental Hematology, 37, 559–572. Udupa, K. B., Crabtree, H. M. & Lipschitz, D. A. (1986). In vitro culture of proerythroblasts: Characterization of proliferative response to erythropoietin and steroids. Br. J. Haematol., 62, 705–714. von Lindern, M., Zauner, W., Mellitzer, G., Steinlein, P., Fritsch, G., Huber, K., Lowenberg, B. & Beug, H. (1999). The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood, 94, 550-559. Wang, H., Liu, D., Song, P., Jiang, F., Chiand, X. & Zhang, T. (2021). Exposure to hypoxia causes stress erythropoiesis and downregulates immune response genes in spleen of mice. BMC Genomics, 22, 413, doi:10.1186/s12864-021-07731-x. Wei, C., Wang H., Liu G., Zhao F., Kijas J. W., Ma Y., Lu J. , Zhang L., Cao J., Wu M., Wang G., Liu R., Liu Z., Zhang S., Liu, Ch. & Du, L. (2016). .Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep., 6, 26770. doi: 10.1038/srep26770 (2016). Wessely, O., Deiner, E. M., Beug, H. & von Lindern, M. (1997). The glucocorticoid receptor is a key regulator of the decision between self-renewal and differentiation in erythroid progenitors. EMBO J., 16, 267–280. West, J. B. S., Luks, R. B. & Milledge, J. S. (2013). High Altitude Medicine and Physiology. Boca Raton, FL: CRC Press. Zhuang, J., Droma, T., Sutton, J. R., McCullough, R. E., McCullough, R. G., Groves, B. M., Rapmund, G., Janes, C., Sun, S. & Moore, L. G. (1993). Autonomic regulation of heart rate response to exercise in Tibetan and Han residents of Lhasa 3658 m. J. Appl. Physiol., 75, 1968–1973.
|
|
| Date published: 2023-12-15
Download full text