Nitrogen balance at the maize cultivation in Southern Bulgaria under anthropogenic loading
Tsetska Simeonova, Lyuba Nenova, Maya Benkova, Irena Atanassova
Abstract: The aim of the present study is to perform a “conditional” nitrogen balance at the maize cultivation and estimate its input and output rates. The influence of precipitation, irrigation and fertilizer application and N uptake by plant production and N output by lysimetric water are evaluated in this study. The tryal is carried out on a Fluvisol, near Plovdiv, in Southern Bulgaria, under the conditions of field experiment with irrigation maize over the period 2020. The experimental design includes three treatments with nitrogen and phosphorus application, N120P80, N160P120, N200P160 and control (N0P0), The field plots are equipped with modification of Ebermayer type of lysimeters, which collect water from 100 cm depth of soil profile. According to the data received, it was observed that compensation between the amounts of N input and output was achieved in two variants (N120, N160). The nitrogen balance, obtained on the long-term field experiments can be successfully used for optimizing the applied fertilizers under specific soil and environmental conditions.
Keywords: fertilizer application; lysimetric water; precipitation; uptake and output nitrogen
Citation: Simeonova, Ts., Nenova, L., Benkova, M. & Atanasova, I. (2023). Nitrogen balance at the maize cultivation in Southern Bulgaria under anthropogenic loading, Bulg. J. Agric. Sci., 29(6), 1049–1056.
References: (click to open/close) | Addiscott, T. M. (1996). Measuring and modelling nitrogen leaching: parallel problems. Plant and Soil, 181, 1-6. Alexandrova, P., Koleva, V. Stoicheva, D. & Donov, D. (2007). Environmental aspects of the application of mineral fertilizers in the cultivation of eggplant. In: Proceedings from International Conference “60 Years Institute N.Pushkarov”,13-17 May, Sofia, 509-513 (Bg). Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L. et al., (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res., 53, 47. https://doi.org/10.1186/s40659-020-00312-4. Arinushkina, E. (1970). Guidelines in Chemical Soil Analysis. Izd. MGU, Moskow, 487 (Ru). Barros, R., Isidoro, D. & Araguls, R. (2012). Irrigation management nitrogen fertilization and nitrogen losses in the return flows of la Violada irrigation district (Spain). Agriculture, Ecosystems & Environment, 155, 161-171. Bordoloi, L. J., Singh, A. K. & Hazarika, S. (2013). Evaluation of nitrogen availability indices and their relationship with plant response on acidic soils of India. Plant, Soil and Environment, 59(6), 235-240. Bu, H. M., Meng, W., Zhang, Y. & Wan, J. (2014). Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol. Indic., 41, 187–197. Chen, Xi., Wang, Y., Cai, Z., Wu, Ch. & Ye, C. (2020). Effects of Land-Use and Land-Cover Change on Nitrogen Transport in Northern Taihu Basin, China during 1990–2017. Sustainability, 12(9), 3895. doi:10.3390/su1209389. Chiwa, M., Enoki, T., Higashi, N., Kumagai, T. & Otsuki, K. (2013). The Increased Contribution of Atmospheric Nitrogen Deposition to Nitrogen Cycling in a Rural Forested Area of Kyushu, Japan. Water Air Soil Pollut., 224(11), 1763. https://doi.org/10.1007/s11270-013-1763-2. Cregger, M. A. McDowell, N. G. Pangle, R. E. Pockman, W. T. & Classen, A. T. (2014). The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Functional Ecology, 28(6), 1534-1544. https://doi.org/10.1111/1365-2435.12282. Ding, W., Xu, X., Zhang, J. Huang, S., He, P. & Zhou, W. (2021). Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China. Environmental Pollution, 290, 118091. https://doi.org/10.1016/j.envpol.2021.118091. FAO (1998). World Reference Base for Soil Resources. Rome: Food and Agriculture Organization of the United Nations. Gauger, T., Koble, R., Spranger, T., Bleeker, A. & Draaijers, G. (2001). Deposition loads of sulpher and nitrogen in Germany. Water, Air and Soil Polution, 1(1/2), 353-373. Gao, M., Qiua, J., Li, Ch., Wanga, L., Li, H. & Gao, Ch. (2014). Modeling nitrogen loading from a watershed consisting of cropland and livestock farms in China using Manure DNDC. Agriculture, Ecosystems and Environment, 185, 88–98. https://doi.org/10.1016/j.agee.2013.10.023. Han, Y, Feng, G., Swaney, D. P., Dentener, F., Koeble, R., Ouyang. Y. & Gao, W. (2020). Global and regional estimation of net anthropogenic nitrogen inputs (NANI). Geoderma, 361, 114066. https://doi.org/10.1016/j.geoderma.2019.114066. Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehman, C. M., Puchalski, M. A., Gay, D. A. & Collett, Jr. (2016). Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences USA, 113(21), 5874–5879. https://doi.org/10.1073/pnas.1525736113. Levicharska, E. (1991). Climate of Bulgaria. Publiching House of Bulgarian Academy of Sciences, Sofia, 449 (Bg). Mitchell, M. J. (2011). Nitrate dynamics of forested watersheds spatial and temporal patterns in North America, Europe and Japan. Journal of Forest Research, 16(5), 333-340. Moustakas, N. K. & Kosmas, C. S. (2017). Nitrogen Balance in a Poorly Draining Intensively Cultivated Soil. Notulae Botanicae Horti Agrobotanici. Cluj-Napoca, 45(1), 140-148. https://doi.org/10.15835/nbha45110720. Ngoye, E. & Machiwa, J. F. (2004). The influence of land use patterns in the Ruvu river water shed on water quality in the river system. Phys. Chem. Earth, 29(15-18), 1161–1166. Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M. H., Nunes, J. P., Renschler, C. S., Souchère, V. & van Oost, K. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61(2-3), 131–154. doi:10.1016/j.catena.2005.03.007. Nieder, R., Benbi, D. K. & Scherer, H. W. (2011). Fixation and defixation of ammonium in soils: a review. Biol. Fertil. Soils, 47, 1–14. https://doi.org/10.1007/s00374-010-0506-4. Okamoto, K., Goto, Sh., Anzai, T. & Ando, Sh. (2021). Nitrogen Leaching and Nitrogen Balance under Differing Nitrogen Fertilization for Sugarcane Cultivation on a Subtropical Island. Water, 13(5), 740. https://doi.org/10.3390/w13050740. Pennino, M. J., Leibowitz, S. G., Compton, J. E., Hill, R. A. & Sabo, R. D. (2020). Patterns and predictions of drinking water nitrate violations across the conterminous United States. Sci. Total Environ., 722, 137661. https://doi.org/10.1016/j.scitotenv.2020.137661. Peterburgskii, A. V. (1986). Practical Guidance on Agrochemistry. Kolos Publ., Moscow, Russia. Poch-Massegú, R., Jimenez-Martinez, J., Wallis, K. J., Ramirez de Cartagena, F. & Candela, L. (2014). Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions. Agricultural Water Management, 134, 1-13. Roy, R. N. & Misra, R. V. (2005). Soil nitrogen balance assessment and its application for sustainable agriculture and environment. China Life Sciences, 48(S2), 843-855. Sainju, U. M. (2017). Determination of nitrogen balance in agroecosystems. MethodsX, 4, 199-208 DOI: 10.1016/j.mex.2017.06.001. Salo, T. & Turtola, E. (2006). Nitrogen balance as an indicator of nitrogen leaching in Finland. Agriculture, Ecosystem and Environment, 113(1-4), 98-107. Shröder, J. J. & Neeteson, J. J. (2006). Nitrogen management in agroecosystems in relation to the Water Framework Directive. In: Proceedings of the 14th N workshop, Wageningen, 241–243. Simeonova Ts., Stoicheva, D. & Alexandrova, P. (2015). Ecological problems and nitrogen balance in vegetable crops growing, Eurasian Journal of Soil Science, 4(1), 62–69. https://dergipark.org.tr/en/download/article-file/62903 (Bg). Simeonova Ts., Benkova, M, Nenova, L. & Atanassova, I. (2021). Leaching of chemical elements under some anthropogenic impacts on Fluvisols. Bulg. J. Agric. Sci., 27(4), 758-763. Smith, D. R., Livingston, S. J., Zuercher, B. W., Larose, M., Heathman, G. C. & Huang, C. (2003). Nutrient loss from row crop agriculture in Indiana, Journal of Soil and Water Conservation, 63, 396–409. Srivastava, R. K, Panda, R. K. & Chakraborty, A. (2020). Quantification of nitrogen transformation and leaching response to agronomic management for maize crop under rainfed and irrigated condition. Environmental Pollution, 265, (Pt A), 114866. https://doi.org/10.1016/j.envpol.2020.114866. Stoicheva, D., Alexandrova, P. Stoichev, D. & Koleva, V. (2003). Effect of fertilizer applied on migration of chemical elements in Alluvial Meadow Soil. Journal of Balkan Ecology, 6, 161-167 (Bg). Stoicheva, D., Alexandrova, P., Koleva, V., Simeonova, Ts., Mitova, Iv. & Atanasova, E. (2011). Nitrogen balance in different vegetable crops growing on Fluvisol in Southern Bulgaria. In: Proceeding of International conference “100 years Bulgarian Soil Science”, 16-20 May, Sofia, 654-658 (Bg). Stoichev, D. (1974). A device to obtain lysimetric water. Soil Science and Agrochemistry, 5, 13-18 (Bg). Stoichev, D., Glogov, L., Petkova, D., Stoicheva, D. & Donov, D. (1988). Ecological evaluation of some intensive factors in monoculture maize production. Soil Science and Agrochenistry, 23(1), 5-13 (Bg). Stoichev, D. (1997). Some ecological aspects of the anthropogenic loading on the soils, Dr Sc. Dissertation, Sofia, Bulgaria, 312 (Bg). Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. doi: 10.1038/nature01014. Wang, B., Liu, W., Xue, Q., Dang, T., Gao, C., Chen, J. & Zhang, B. (2013). Soil water cycle and crop water use efficiency after long-term nitrogen fertilization in Loess Plateau. Plant, Soil and Environment, 59(1), 1-7. Wick, K., Heumesser, C. & Scnmid, E. (2012). Groundwater nitrate contamination: factors and indicators. Journal of Environmental Management, 111(3),178-186. Zhang, X. (2016). Spatio-temporal patterns in net anthropogenic nitrogen and phosphorus inputs across the Grand River Watershed. Thesis University of Waterloo, 70.
|
|
| Date published: 2023-12-20
Download full text