Exploring genetic variability and selection of Garole Indigenous crossbred sheep (F1) for various traits under semi-intensive systems in the southwestern coastal areas of Bangladesh
Minhazul Abedin Sun, Sarder Safiqul Islam

, Nayema Akter, Sanjana Karim, Md. Shafiqul Islam, S. M. Abdullah Al Mamun, Md. Mustajabur Rahman
Abstract: The research aimed to assess the genetic diversity among Garole × Indigenous crossbred sheep (F1) for various quantitative traits, to enhance the selection process to improve their productivity and reproductive capabilities. Additionally, the study sought to pinpoint the top-performing sheep genotypes for potential commercialization. Twenty nondescript indigenous ewes were mated with two pure-line Garole rams under semi-intensive rearing conditions. Among the traits, gain between the birth and weaning period and weaning weight were highly and positively correlated (r = 0.984). In contrast, the weight at maturity and growth between the first lambing and maturity exhibited higher but hostile relations (-0.460) with each other. Principal component analysis (PCA) extracted four principal components, which explained 81.84% of the total variation. The first principal component accounted for 30.46% of the total variation. The cluster analysis revealed the presence of wide genetic variations among the sheep genotypes, grouping them into four distinct clusters. Cluster III contained the genotypes with the best response to most of the traits under study, and the maximum cluster distance was found between Cluster II and Cluster IV. The selection of genotypes from Cluster III for commercial purposes may enhance the economic return of sheep farmers. In contrast, selecting parents from distant clusters (II and IV) for hybridization may harness hybrid vigor to produce the best-performing sheep breeds. The study provided new and valuable insights into the genetic diversity of crossbred sheep, identifying the best-performing genotypes for both breeding purposes and commercial applications.
Keywords: crossbred F1 sheep; genetic diversity; principal component analysis; productive and reproductive performance; selection
Citation: Sun, M. A., Islam, S. S., Akter, N., Karim, S., Islam, M. S., Al Mamun, S. M. A. & Rahman, M. M. (2025). Exploring genetic variability and selection of Garole × Indigenous crossbred sheep (F1) for various traits under semi-intensive systems in the southwestern coastal areas of Bangladesh. Bulg. J. Agric. Sci., 31(6), 1209–1219
| References: (click to open/close) | Asaduzzaman, M., Jha, P. K., Alam, M. G. S. & Bari, F. Y. (2020). Multi-farm evaluation of morphometric, reproductive, and productive traits of Jamuna basin indigenous and Muzaffarnagari cross-breed sheep of Bangladesh. Journal of Applied Animal Science, 13(1), 31 - 50. Retrieved from https://www.thaiscience.info/Journals/Article/JAAS/10997239.pdf. Ashebir, G., Haile, G. N. & Weldu, K. (2016). Reproductive performance of Begayt sheep under different management systems in Western Zone of Tigray. Journal of Dairy, Veterinary & Animal Research, 3(3), 85 - 89. Retrieved from https://medcraveonline.com/JDVAR/JDVAR-03-00077.pdf. Bhuiyan, A. K. F. H. (2006). Livestock genetic resources in Bangladesh: Preservation and Management. In International conference on livestock services, Chinese Academy of Agricultural Science (CAAS), Beijing, China, 6, 16 - 20. Brooks, S. A., Makvandi‐Nejad, S., Chu, E., Allen, J. J., Streeter, C., Gu, E., McCleery, B., Murphy, B. A., Bellone, R. & Sutter, N. B. (2010). Morphological variation in the horse: defining complex traits of body size and shape. Animal Genetics, 41, 159 - 165. https://doi.org/10.1111/j.1365-2052.2010.02127.x. da Silva, M. S., Shiotsuki, L., Lôbo, R. N. B. & Facó, O. (2015). Principal component analysis for evaluating a ranking method used in the performance testing in sheep of Morada Nova breed. Semina Ciências Agrárias, 36(6), 3909 - 3922. http://dx.doi.org/10.5433/1679-0359.2015v36n6p3909. Islam, F., Sumon, M. R. A., Faruque, M. O., Sarder, M. A. & Hossain, M. S. (2016). Breeding practices of Bangladeshi Coastal sheep. International Journal of Business, Social and Scientific Research, 4(4), 324 - 327. Retrieved from https://www.researchgate.net/publication/313793442_BREEDING_PRACTICES_OF_BANGLADESHI_COASTAL_SHEEP. Kantardzic, M. (2003). Data Mining: Concepts, models, methods, and algorithms. Technometrics, 45(3), 277. Khan, M. Y. A., Husain, S. S., Alam, M. R., Teneva, A., Han, J. L. & Faruque, M. O. (2009). Genetic relationships in different sheep populations of Bangladesh based on microsatellite markers. Journal of the Bangladesh Agricultural University, 7(2), 291 - 294. https://doi.org/10.22004/ag.econ.208434. Kunene, N. W., Nesamvuni, A. E. & Nsahlai, I. V. (2009). Determination of prediction equations for estimating body weight of Zulu (Nguni) sheep. Small Ruminant Research, 84(1-3), 41 - 46. https://doi.org/10.1016/j.smallrumres.2009.05.003. Mavule, B. S., Muchenje, V., Bezuidenhout, C. C. & Kunene, N. W. (2013). Morphological structure of Zulu sheep based on principal component analysis of body measurements. Small Ruminant Research, 111(1-3), 23 - 30. https://doi.org/10.1016/j.smallrumres.2012.09.008. Mishra, A. K., Vohra, V., Raja, K. N., Singh, S. & Singh, Y. (2017). Principal component analysis of biometric traits to explain body conformation in Kajali sheep of Punjab, India. Indian Journal of Animal Sciences, 87(1), 9398. https://doi.org/10.56093/ijans.v87i1.66914. Oliveira, E. J., Savegnago, R. P., Freitas, L. A. D., Freitas, A. P., Maia, S. R., Simili, F. F., Faro, L. E., Costa, R. L. D. D., Santana Júnior, M. L. & Paz, C. C. P. D. (2018). Estimates of genetic parameters and cluster analysis for worm resistance and resilience in Santa Inês meat sheep. Pesquisa Agropecuária Brasileira, 53(12), 1338 - 1345. https://doi.org/10.1590/S0100-204X2018001200006. Pervage, S., Ershaduzzaman, M., Talukder, M. A. I., Hasan, M. N. & Khandoker, M. A. M. Y. (2009). Phenotypic characteristics of indigenous sheep of Bangladesh. Bangladesh Journal of Animal Science, 38(1-2), 1 - 6. Putra, W. P. B. & Ilham, F. (2019). Principal component analysis of body measurements and body indices and their correlation with body weight in Katjang does of Indonesia. Journal of Dairy, Veterinary & Animal Research, 8(3), 124 - 134. https://doi.org/10.15406/jdvar.2019.08.00254. Rahaman, M. A., Rahman, M. M. & Hossain, M. S. (2019). Climate-resilient agricultural practices in different agro-ecological zones of Bangladesh. Handbook of climate change resilience, 3, 1 - 27. https://doi.org/10.1007/978-3-319-71025-9_42-1. Sa’adi, Z., Shahid, S. & Shiru, M. S. (2021). Defining climate zone of Borneo based on cluster analysis. Theoretical and Applied Climatology, 145, 1467 - 1484. https://doi.org/10.1007/s00704-021-03701-1. Salako, A. E. (2006). Principal component factor analysis of the morphostructure of immature Uda sheep. International Journal of Morphology, 24(4), 571 - 774. https://doi.org/10.4067/S0717-95022006000500009. Salman, F. H. (2020). Cluster Analysis Usage to Assess Several (Breeding Goats) Problems: Case Study in Iraq. Multicultural Education, 6(3), 166 - 185. https://doi.org/10.5281/zenodo.4211241. Sarker, M. M., Hassan, L., Rashid, M. M. & Seraj, S. (2013). Molecular characterization and morphological clustering of exotic early maturing rice (Oryza sativa L.) lines. Journal of the Bangladesh Agricultural University, 11(2), 233 - 240. https://doi.org/10.22004/ag.econ.209863. Serrano, J. O., Villares, A., Manuel-Malamba, F. D., Martínez-Melo, J., Mazorra, C., Borroto, Á., Hajari, E., Fonseca-Fuentes, N. & Lorenzo, J. C. (2021). Hierarchical cluster analysis: a statistical tool to study sheep behavior under heat stress. World Journal of Advanced Pharmaceutical and Life Sciences, 1(1), 1 - 7. https://doi.org/10.53346/wjapls.2021.1.1.0013. Sharma, R. C., Arora, A. L., Narula, H. K. & Singh, R. N. (1999). Characteristics of Garole sheep in India. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales, 26, 57 - 64. https://doi.org/10.1017/S101423390000119X. Siminska, E., Bernacka, H. & DYMEK, M. (2008). Reproductive performance of Pomeranian sheep in the baldram conservation herd. Journal of Central European Agriculture, 9(1), 45 - 50. Retrieved from https://hrcak.srce.hr/file/39203. Skjervold, H. (1979). Causes of variation in sex ratio and sex combination in multiple births in sheep. Livestock Production Science, 6(4), 387 - 396. https://doi.org/10.1016/0301-6226(79)90006-X. Yakubu, A. & Ayoade, J. A. (2009). Application of Principal Component Factor Analysis in Quantifying Size and Morphological Indices of Domestic Rabbits. International Journal of Morphology, 27(4), 1013 - 1017. https://doi.org/10.4067/S0717-95022009000400009. Yakubu, A., Salako, A. E. & Abdullah, A. R. (2011). Varimax rotated principal component factor analysis of the zoometrical traits of Uda sheep. Archivos de zootecnia, 60(231), 813 - 816. https://dx.doi.org/10.4321/S0004-05922011000300069. Yunusa, A. J., Salako, A. E. & Oladejo, O. A. (2013). Principal component analysis of the morphostructure of Uda and Balami sheep of Nigeria. International Journal of Agricultural Science Research, 1(3), 45 - 51. |
|
| Date published: 2025-12-16
Download full text