Chemical composition and fatty acid profile of meat from Bulgarian Grey cattle comparison of three muscles
Teodora Popova

, Krasimir Dimov

, Nikola Chatalbashev, Svetoslav Karamfilov

, Vasil Nikolov

Abstract: The study aimed to compare the chemical composition and the fatty acid profile of three muscles – m. Longissimus thoracis et lumborum (m. LTL), m. Semimembranosus (m. SM) and m. Supraspinatus (m. SP) in male Bulgarian Grey calves. The animals were 12 months old and reared extensively on stable pasture. The three muscles differed significantly in their chemical composition. The highest protein content was determined in m. LTL, while m. SP had the highest level of intramuscular fat, moisture, and myoglobin. The analysis of the fatty acid profile showed a significant effect of the muscle type regarding the percentage of C16:0 (P=0.0313), C16:1 (P=0.0040), C18:0 (P=0.0016), C18:2n-6 (P=0.0292), C20:2n-6 (P=0.0029), C20:4n-6 (P=0.0158), C22:4n-6 (P=0.0168), and C22:5n-3 (P=0.0062), among the three muscles, m. LTL had the highest percentage of C16:0 and C18:2n-6, and the lowest percentages of C16:1n-9 and C22:4n-6. The content of С18:0 was highest in m. SP, whereas m. SM displayed the highest amounts of C20:2n-6, C20:4n-6, C20:5n-3, C22:4n-6, and С22:5n-3. There were no significant differences in AI and TI among the muscles; however, the latter tended to be higher in m. SP. In addition, the n-6/n-3 ratio values did not differ between the muscles. In m.SM and m.SP’s values were within 5.22-5.26, slightly exceeding the dietary recommendations.
Keywords: Bulgarian Grey cattle; chemical composition; fatty acids; meat quality; muscles
Citation: Popova, T., Dimov, K., Chatalbashev, N., Karamfilov, S. & Nikolov, V. (2025). Chemical composition and fatty acid profile of meat from Bulgarian Grey cattle – comparison of three muscles. Bulg. J. Agric. Sci., 31(6), 1203–1208
| References: (click to open/close) | AOAC (2004). Official methods of analysis, 18th Ed. Association of Official Analytical Chemists, Arlington, VA, USA. Belhaj, K., Mansouri, F., Benmoumen, A., Sindic, M., Fauconnier, M. L., Boukharta, M., Serghini, C. H. & Elamrani, A. (2020). Fatty acids, health lipid indices, and cholesterol content of sheep meat of three breeds from Moroccan pastures. Archives Animal Breeding, 63(2), 471 - 482. Bermingham, E. N., Agnew, M., Gomes Reis. M., Taukiri. K., Jonker. A., Cameron-Smith, D. & Craigie. C. R. (2021) Assessment of atherogenic index, long-chain omega-3 fatty acid and phospholipid content of prime beef: a survey of commercially sourced New Zealand Wagyu and Angus beef cattle. Animal Production Science, 61, 179 - 190. Bligh, E. G. & Dyer, W. Y. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911 – 917. Chaosap, C., Sivapirunthep, P., Sitthigripong, R., Tavitchasri, P., Maduae, S., Kusee, T., Setakul, J. & Adeyemi, K. (2021). Meat quality, post-mortem proteolytic enzymes, and myosin heavy chain isoforms of different Thai native cattle muscles. Animal Bioscience, 34(9), 1514 - 1524. Chaosap, C., Sommart, K., Adeyemi, K. D., Polyorach, S. & Lukkananukool, A. (2024). Chemical and fatty acid composition, collagen, calpain and troponin T contents and quality characteristics of five muscle types in native Thai cattle. Journal of Food Composition and Analysis, 127, 105929. De Smet, S., Raes, K. & Demeyer, D. (2004). Meat fatty acid composition as affected by fatness and genetic factors: a review. Animal Research, 53(2), 81 - 98. Domínguez, R., Crecente, S., Borrajo, P., Agregan, R. & Lorenzo, J. M. (2015). Effect of slaughter age on foal carcass traits and meat quality. Animal, 9, 1713 - 1720. Gaddini, A. (2019). La Grigia bulgara. Eurocarni, 3, 120 - 127. Gonzales-Barron, U., Popova, T., Bermúdez Piedra, R., Tolsdorf, A., Geß, A., Pires J., Domínguez, R., Chiesa, F., Brugiapaglia, A., Viola, I., Battaglini, L. M., Baratta, M., Lorenzo, J. M. & Cadavez, V. A. P. (2021). Fatty acid composition of lamb meat from Italian and German local breeds. Small Ruminant Research, 200, 106384. Gonzalez-Becerra, K., Barron-Cabrera, E., Muñoz-Valle, J. F., Torres-Castillo, N., Rivera-Valdes, J. J., Rodriguez-Echevarria, R. & Martinez-Lopez, E. (2023). A balanced dietary ratio of n-6:n-3 polyunsaturated fatty acids exerts an effect on total fatty acid profile in RBCs and inflammatory markers in subjects with obesity. Healthcare (Basel), 11(16), 2333. Gorinov, Y. & Lidji, K. (2011). Breeding activities in the process of setting up the organizational structure of the Bulgarian grey cattle breed. Agricultural Sciences, 6, 7-10. Hoehne, A., Nuernberg, G., Kuehn, C. & Nuernberg, K. (2012). Relationships between intramuscular fat content, selected carcass traits, and fatty acid profile in bulls using a F2-population. Meat Science, 90(3), 629 - 635. Horcada-Ibáñez, A., Polvillo-Polo, O., Lafuente-García, A., González-Redondo, P., Molina-Alcalá, A. & Luque-Moya, A. (2016). Beef quality of native pajuna breed calves in two production systems. Agrociencia, 50(2), 167 - 182. Hornsey, H. C. (1956). Color of cooked cured pork. I. Estimation of the nitric oxide-haem pigments. Journal of the Science of Food and Agriculture, 23, 534 - 535 Hristov, P. I., Teofanova, D. R., Neov, B. S., Zagorchev L. I. & Radoslavov, G. A. (2014). Population structure of two native Bulgarian cattle breeds with regard to CSN3 and CSN1S1 gene polymorphism. Bulgarian Journal of Veterinary Medicine, 17(1), 18 - 24. Hwang, Y.-H. & Joo, S.-T. (2016). Fatty acid profiles of ten muscles from high and low marbled (quality grade 1++ and 2) Hanwoo steers. Korean Journal for Food Science of Animal Resources, 36(5), 679 - 688. Hwang, Y.-H. & Joo, S.T. (2017). Fatty acid profiles, meat quality, and sensory palatability of grain-fed and grass-fed beef from Hanwoo, American, and Australian crossbred cattle. Korean Journal of Food Science of Animal Resources, 37(2), 153 - 161. Hwang, Y.-H., Kim, G.-D., Jeong, J.-Y., Hur, S.-J. & Joo, S.-T. (2010). The relationship between muscle fiber characteristics and meat quality traits of highly marbled Hanwoo (Korean native cattle) steers. Meat Science, 86(2), 456 - 461. JMP v.7, SAS Institute Inc. Cary, NC, USA. Joo, S.-T., Joo, S.-H. & Hwang, Y.-H. (2017). The Relationships between muscle fiber characteristics, intramuscular fat content, and fatty acid compositions in m. Longissimus Lumborum of Hanwoo steers. Korean Journal for Food Science of Animal Resources, 37(5), 780 - 786. Kim, K., Hyeon, J., Lee, S. A., Kwon, S. O., Lee, H., Keum, N., Lee, J. K. & Park, S. M. (2017). Role of total, red, processed, and white meat consumption in stroke incidence and mortality: a systematic review and meta-analysis of prospective cohort studies. Journal of American Heart Association, 6(9), e005983. Kirchofer, K. S., Calkins, C. R. & Gwartney, B. L. (2002). Fiber-type composition of muscles of the beef chuck and round. Faculty Papers and Publications in Animal Science, 586. Lebedová, N., Bureš, D., Needham, T., Čítek, J., Dlubalová, Z., Stupka, R. & Bartoň, L. (2021). Histochemical characterisation of high-value beef muscles from different breeds, and its relation to tenderness. Livestock Science, 247, 104468. Lescinsky, H., Afshin, A., Ashbaugh, C., Bisignano, C., Brauer, M., Ferrara, G., Hay, S. I., He, J., Iannucci, V., Marczak, L. B., McLaughlin, S., Mullany, E. C., Parent, M. C., Serfes, A. L., Sorensen, R. J. D., Aravkin, A. Y., Zheng, P. & Murray, C. J. L. (2022). Health effects associated with consumption of unprocessed red meat: a Burden of Proof study. Nature Medicine, 28, 2075 - 2082. Lidji, K. & Gorinov, Y. (2013). Influence methods of breeding and rearing on level selection and technological dropping out by Bulgarian grey cattle. Agricultural Sciences, 13, 101 - 105. Neov, B., Teofanova, D., Zagorchev, L., Radoslavov, G. & Hristov, P. (2013). Milk protein polymorphism in Bulgarian grey cattle population. Bulg. J. Agric. Sci. (Supplement 2), 194 - 196. Ponnampalam, E. N., Kearns, M., Kiani, A., Santhiravel, S., Vahmani, P., Prache, S., Monahan, F. J. & Mapiye, C. (2024). Enrichment of ruminant meats with health enhancing fatty acids and antioxidants: feed-based effects on nutritional value and human health aspects – invited review. Frontiers of Animal Science, 5. Popova, T. (2014). Fatty acid composition of longissimus dorsi and semimembranosus muscles during storage in lambs reared indoors and on pasture. Emirates Journal of Food and Agriculture, 26(3), 302 - 308. Sanders, L. M., Wilcox, M. L. & Maki, K. C. (2023). Red meat consumption and risk factors for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition, 77, 156 - 165. Shabtay, A. (2015). Adaptive traits of indigenous cattle breeds: The Mediterranean Baladi as a case study. Meat Science, 109, 27 - 39. Song, S., Park, J., Im, C., Cheng, H., Jung, E.-Y., Park, T. S. & Kim, G.-D. (2022). Muscle fiber type-specific proteome distribution and protease activity in relation to proteolysis trends in beef striploin (m. longissimus lumborum) and tenderloin (m. psoas major), LWT, 171, 114098. Song, S., Ahn, C. H. & Kim, G. D. (2020). Muscle fiber typing in bovine and porcine skeletal muscles using immunofluorescence with monoclonal antibodies specific to myosin heavy chain isoforms. Food Science of Animal Resources, 40(1), 132 - 144. Ulbricht, T. L. & Southgate, D. A. T. (1991). Coronary heart disease: Seven dietary factors. Lancet, 338, 985 - 992. USDA (2024). Global production. https://fas.usda.gov/data/production. Van Name, M. A., Savoye, M., Chick, J. M., Galuppo, B. T., Feldstein, A. E., Pierpont, B., Johnson, C., Shabanova, V., Ekong, U., Valentino, P. L., Kim, G., Caprio, S. & Santoro, N. (2020). A low ω-6 to ω-3 PUFA ratio (n–6:n–3 PUFA) diet to treat fatty liver disease in obese youth. The Journal of Nutrition, 150(9), 2314 - 2321. Vargas-Ramella, M., Pateiro, M., Barba, F. J., Franco, D., Campagnol, P. C. B., Munekata, P. E. S., Tomasevic, I., Domínguez, R. & Lorenzo, J. M. (2020). Microencapsulation of healthier oils to enhance the physicochemical and nutritional properties of deer páté. LWT Food Science and Technology, 125, 109223. Vázquez-Mosquera, J. M., Fernandez-Novo, A., de Mercado, E., Vázquez-Gómez, M., Gardon, J. C., Pesántez-Pacheco, J. L., Revilla-Ruiz, Á., Patrón-Collantes, R., Pérez-Solana, M. L., Villagrá, A., Martínez, D., Sebastián, F., Pérez-Garnelo, S. S. & Astiz, S. (2023). Beef nutritional characteristics, fat profile and blood metabolic markers from purebred wagyu, crossbred Wagyu and crossbred European steers raised on a fattening farm in Spain. Animals, 13, 864. Wang, X., Lin, X., Ouyang, Y. Y., Liu, J., Zhao, G., Pan, A. & Hu, F. B. (2016). Red and processed meat consumption and mortality: dose-response meta-analysis of prospective cohort studies. Public Health and Nutrition, 19(5), 893 - 905. Williams, P. (2007). Nutritional composition of red meat. Nutrition & Dietetics, 64, S113 - S119. Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R. & Enser, M. (2004). Effects of fatty acids on meat quality: a review. Meat Science, 66(1), 21 - 32. Yang, L. G., Song, Z. X., Yin, H., Wang, Y. Y., Shu, G. F., Lu, H. X., Wang, S. K. & Sun, G. J. (2016). Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids, 51(1), 49 - 59. |
|
| Date published: 2025-12-16
Download full text