In vitro genotype-specific responses of tomato to ZnO nanoparticles: Impacts on growth and nutrient uptake
Zhana Ivanova

, Veneta Stoeva

, Katya Vasileva

, Stanislava Grozeva

, Ivanka Tringovska

Abstract: The urgent need for sustainable and efficient methods to enhance plant resistance to abiotic stresses, along with the growing demand for high-quality, nutrient-rich food, has intensified the search for innovative agronomic solutions. One of the most actively researched approaches involves the use of nanoparticles, which, due to their small size and enhanced absorpion, have a potential to improve plant physiological processes.
This study aimed to evaluate the effects of zinc oxide (ZnO) nanoparticles (NPs) on growth and micronutrient accumulation in two Bulgarian tomato varieties (Ideal and Rozovo sartse) grown in vitro. Plants were cultured on Murashige and Skoog (MS) medium, supplemented with 18 nm ZnO NPs at four concentrations (0, 0.5, 1.5, and 2.5 mg/L). The results demonstrated a clear genotype-dependent response to nanoparticle exposure. While the Ideal variety showed limited growth improvement and no significant increase in microelement content, Rozovo sartse exhibited enhancements in both growth and nutrient accumulation, particularly at the highest concentration of 2.5 mg/L.
The highest accumulation of Zn, Fe, and B in both roots and shoots of Rozovo sartse occurred at 2.5 mg/L, with Zn levels in shoots reaching 249.9 ppm, which is more than twice the control. In contrast, Cu levels decreased in both genotypes, likely due to competitive uptake with Zn. Manganese levels were not significantly affected. Biometric indicators such as plant height, root length, fresh weight of shoot and roots, and number of roots were also significantly improved in Rozovo sartse, suggesting that ZnO NPs can be a potential tool for plant growth stimulation.
These findings highlight the importance of genotype selection when applying nanomaterials in plant biotechnology and support the use of ZnO NPs as a promising strategy for enhancing micronutrient content and growth in responsive tomato genotypes.
Keywords: microelements; NPs; Solanum lycopersicum L.; zinc
Citation: Ivanova, Zh., Stoeva, V., Vasileva, K., Grozeva, S. & Tringovska, I. (2025). In vitro genotype-specific responses of tomato to ZnO nanoparticles: Impacts on growth and nutrient uptake. Bulg. J. Agric. Sci., 31(6), 1171–1178
| References: (click to open/close) | Ahmed, R., Uddin, M. K., Quddus, M. A., Samad, M. Y. A., Hossain, M. M. & Haque, A. N. A. (2023). Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake, and quality of tomato. Horticulturae, 9(2), 162. Ahmed, R., Yusoff Abd Samad, M., Uddin, M. K., Quddus, M. A. & Hossain, M. A. M. (2021). Recent trends in the foliar spraying of zinc nutrient and zinc oxide nanoparticles in tomato production. Agronomy, 11(10), 2074. https://doi.org/10.3390/agronomy11102074. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4). 677 - 702. doi: 10.1111/j.1469-8137.2007.01996.x. PMID: 17286818. Chen, H., Song, Y., Wang, Y., Wang, H., Ding, Z. & Fan, K. (2024). ZnO nanoparticles: improving photosynthesis, shoot development, and phyllosphere microbiome composition in tea plants. Journal of Nanobiotechnology, 22(1), 389. https://doi.org/10.1186/s12951-024-02667-2. de la Rosa, G., Vázquez-Núñez, E., Molina-Guerrero, C., Serafin-Muniz, A. H. & Vera-Reyes, I. (2021). Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps. Nanotechnology for Environmental Engineering, 6, 7. https://doi.org/10.1007/s41204-020-00100-1. Dimkpa, C. O., Bindraban, P. S., Fugice, J., Agyin-Birikorang, S., Singh, U. & Hellums, D. (2017). Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agronomy for Sustainable Development, 37, 5. https://doi.org/10.1007/s13593-016-0412-8. Dich, J., Esserti, S., Daouki, K., Es-sahm, I., Rifai, L. A., Koussa, T., Faize, L., Venisse, J. S., Smaili, A., Billah, R. E. K., Soufiane, A. & Faize, M. (2025). Biopolymer coated with ZnO nanoparticles: synthesis, antiphytopathogenic activity, and effects on tomato growth and bacterial speck disease control. Journal of Crop Health, 77(2), 52. El-Mahdy, M. T. K., Radi, A. A. & Shaaban, M. M. (2019). Impacts of exposure of banana to silver nanoparticles and silver ions in vitro. Middle East Journal of Applied Science, 9(3), 727 - 740. Faizan, M., Faraz, A. & Hayat, S. (2020). Effective use of zinc oxide nanoparticles through root dipping on the performance of growth, quality, photosynthesis and antioxidant system in tomato. Journal of Plant Biochemistry and Biotechnology. https://doi.org/10.1007/s13562-019-00525-z. Food and Agriculture Organization of the United Nations. (2009). The State of Food and Agriculture: Livestock in the Balance. Rome, Italy. Retrieved from https://www.fao.org/4/i0680e/i0680e.pdf. Gamborg, O. L., Miller, R. A. & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50, 148 - 151. Gurmani, A. R., Khan, S. U., Andaleep, R., Waseem, K. & Khan, A. (2012) Soil application of zinc improves growth and yield of tomato. Int. J. Agric. Biol., 14, 91 - 96. Karimi, A., Moezzi, A., Chorom, M. & Enayatizamir, N. (2019). Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. Journal of Soil Science and Plant Nutrition, 19, 851 - 864. Kralova, K. & Jampilek, J. (2022). Metal- and metalloid-based nanofertilizers and nanopesticides for advanced agriculture. In: Fraceto, L.F., de Carvalho, H.W.P., de Lima, R., Ghoshal, S., & Santaella, C. (eds.) Inorganic nanopesticides and nanofertilizers, Springer, Cham, 295 - 361. https://doi.org/10.1007/978-3-030-94155-0_10. López-Millán, A. F., Sagardoy, R., Solanas, M., Abadía, A. & Abadía, J. (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65(2–3), 376 - 385. Li, K.-E., Chang, Z.-Y., Shen, C.-X. & Yao, N. (2015). Toxicity of Nanomaterials to Plants. In: Siddiqui, M., Al-Whaibi, M., Mohammad, F. (eds) Nanotechnology and Plant Sciences. Springer, Cham, 101 - 123. https://doi.org/10.1007/978-3-319-14502-0_6. Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, 15, 473 - 497. Obrador, A., Gonzalez, D., Almendros, P. & García, C. (2021). Assessment of phytotoxicity and behavior of 1-year-aged Zn in soil from ZnO nanoparticles, bulk ZnO, and Zn sulfate in different soil-plant cropping systems: from biofortification to toxicity. Journal of Soil Science and Plant Nutrition, in press. Pejam, F., Ardebili, Z.O., Ladan-Moghadam, A. & Danaee, E. (2021). Zinc oxide nanoparticles mediated substantial physiological and molecular changes in tomato. PLoS ONE, 16(3), e0248778. Perez-Velasco, E. A., Betancourt Galindo, R., Valdez Aguilar, L. A., González Fuentes, J. A., Puente Urbina, B. A., Lozano Morales, S. A. & Sánchez Valdés, S. (2020). Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules, 25(6), 1282. Rajput, V., Minkina, T., Sushkova, S., Behal, A. & Mandzhieva, S. (2020). ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environmental Geochemistry and Health, 42, 147 - 158. https://doi.org/10.1007/s10653-019-00317-3. Raliya, R., Tarafdar, J. C. & Biswas, P. (2016). Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. Journal of Agricultural and Food Chemistry, 64(16), 3111 - 3118. https://doi.org/10.1021/acs.jafc.5b05224. Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X. & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, 160 - 166. https://doi.org/10.1016/j.plaphy.2018.12.005. Salama, D. M., Osman, S. A., Abd El-Aziz, M. E., Abd Elwahed, M. S. A. & Shaaban, E. A. (2019). Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology, 19, 101083. https://doi.org/10.1016/j.bcab.2019.101083. Srivastava, R. K., Satyavathi, C. T., Mahendrakar, M. D., Singh, R. B., Kumar, S. & Govindaraj, M. (2021). Addressing iron and zinc micronutrient malnutrition through utrigenomics in pearl millet: advances and prospects. Frontiers in Genetics, 12, 723472. https://doi.org/10.3389/fgene.2021.723472. Srivastav, P., Mahesh, V., Ravindran, G. & Awad, M. (2022). Biofortification—present scenario, possibilities and challenges: A scientometric approach. Sustainability, 14, 11632. https://doi.org/10.3390/su141811632. Thounaojam, T. C., Meetei, T. T., Devi, Y. B. & Singh, N. B. (2021). Zinc oxide nanoparticles (ZnO-NPs): a promising nanoparticle in renovating plant science. Acta Physiologiae Plantarum, 43, 136. https://doi.org/10.1007/s11738-021-03307-0. Vasileva, K., Ivanova, Zh. & Stoeva, V. (2025). Evaluation of nanoparticles of metals and metal oxides for antifungal effect on Verticillium dahliae. Bulg. J. Agric. Sci., 31(3), 475 - 481. Vasileva, K., Ivanova-Doneva, Zh. & Stoeva, V. (2024). Study of the antifungal effect of nanoparticles of metals and metal oxides on Fusarium oxysporum f. sp. lycopersici. Bulg. J. Agric. Sci., 30(5), 821 - 827. Wang, P., Lombi, E., Zhao, F. J. & Kopittke, P. M. (2016). Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science, 21(8), 699 - 712. Yang, F., Hong F., You, W., Liu, C., Gao, F., Wu, C. & Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace. Elem. Res., 110, 179 - 190. Zhou, X., El-Sappah, A. H., Khaskhoussi, A., Huang, Q., Atif, A. M., Elhamid, M. A. A., Ihtisham, M., El-Maati, M. F. A., Soaud, S. A. & Tahri, W. (2025). Nanoparticles: a promising tool against environmental stress in plants. Frontiers in Plant Science, 15, 1509047. https://doi.org/10.3389/fpls.2024.1509047. |
|
| Date published: 2025-12-16
Download full text