Physiological status of cow breeds Blonde d Aquitaine, Chianina, and Marchigiana, which undergo a transition from summer to winter feeding
Vasil Nikolov

, Radka Malinova

, Svetoslav Karamfilov

Abstract: The biochemical parameters of the blood of 23 cows of the Blonde d'Aquitaine (n-13), Chianina (n-5), and Marchigiana (n-5) cattle breeds at the same age, and in the same physiological and bodily condition were examined at the end of the grazing period. The animals were reared on the same farm, on natural pastures, and were not given additional concentrated feed. The breed had a significant influence on the levels of glucose (P<0,01), Alkaline Phosphatase (p<0,01), Carbon Dioxide (P<0,05), and Urea Nitrogen (P<0,001)/ Creatinine (P<0,001) ratio. The Chianina cows exhibited the best physiological parameters and the highest adaptability to the conditions. The Marchigiana cows exhibited alimentary discomfort associated with lower glucose levels (2,992±0.225), higher creatinine levels (146.4±14.67), and lower BUN (2,026±0.090) and BUN/Crea ratio levels (14.75±1.688). The worst physiological markers, demonstrating poor digestion of the pasture grass at the end of the grazing period and starvation, were exhibited by the Blonde d'Aquitaine breed- glucose (2,255±0,143), BUN (1,152±0,055), BUN/Crea (8,764±0,821). Higher total blood protein (85,15- 88,50 g/L) against high globulin (57,03- 57,42) and tCO₂ (27,23-29,81), and negligibly lowered Na levels were reported for the cows of the three breeds. The remaining parameters tested, including ALB, TB, Crea, ALT, AMY, ALP, Ca, P, Mg, K, and Cl-, were within physiological norms.
Keywords: Beef cattle; biochemical analysis; feeding; grazing
Citation: Nikolov, V., Malinova, R. & Karamfilov, S. (2025). Physiological status of cow breeds Blonde d’Aquitaine, Chianina, and Marchigiana, which undergo a transition from summer to winter feeding. Bulg. J. Agric. Sci., 31(5), 1019–1024
| References: (click to open/close) | Aubé, L., Mialon, M. M., Mollaret, E., Mounier, L., Veissier, I. & des Roches, A. D. B. (2022). Assessment of dairy cow welfare at pasture: measures available, gaps to address, and pathways to development of ad-hoc protocols. Animal, 16(8), 100597. Berian, S., Gupta, S. K., Sharma, S., Ganai, I., Dua, S. & Sharma, N. (2019). Effect of heat stress on physiological and hemato-biochemical profile of cross bred dairy cattle. Journal of Animal Research, 9(1), 95 - 101. Bobbo, T., Fiore, E., Gianesella, M., Morgante, M., Gallo, L., Ruegg, P. L., Bittante, G. & Cecchinato, A. (2017). Variation in blood serum proteins and association with somatic cell count in dairy cattle from multi-breed herds, Animal, 11(12), 2309 - 2319. Brahmbhatt, N. N., Kumar, B., Thakre, B. J. & Bilwal, A. K. (2021). Haemato-biochemical characterization of fasciolosis in Gir cattle and Jaffrabadi buffaloes. J. Parasit. Dis., 45, 683 - 688. https://doi.org/10.1007/s12639-020-01342-1 (Abst). Brown-Brandl, T. M. (2018). Understanding heat stress in beef cattle. Revista Brasileira de Zootecnia, 47, e20160414. Del Campo, M., Manteca, X., Soares de Lima, J. M., Brito, G., Hernández, P., Sañudo, C. & Montossi, F. (2021). Effect of different finishing strategies and steer temperament on animal welfare and instrumental meat tenderness. Animals, 11(3), 859. El-Aziem Hashem, M. A. & Mohamed, S. S. (2017). Hazard assessments of cattle fascioliasis with special reference to hemato-biochemical biomarkers. Vet. Med. Open J., 2(1), 12 - 18. doi: 10.17140/VMOJ-2-111. Frejuk, D. V. & Stybel, V. V. (2021). Protein-synthesizing function of the liver of cows at experimental fasciolosis. Ukrainian Journal of Veterinary and Agricultural Sciences, 4(1), 12 - 15. https://doi.org/10.32718/ujvas4-1.03. Greenwood, P. L. (2021). An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal, 15, 100295. Gross, J. J., Schwarz, F. J., Eder, K., van Dorland, H. A. & Bruckmaier, R. M. (2013). Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. J. Dairy Sci., 96(8), 5008 - 5017. doi: 10.3168/jds.2012-6245. Epub 2013 Jun 5. PMID: 23746584. Kalugniy, I. I., Markova, D. S., Yashin, A. V., Prusakov, A. V., Ponamarev, V. S. & Andreeva, N. L. (2021). Diagnosis of hepatopathy in Holstein cattle with metabolic disorders. In: IOP Conference Series: Earth and Environmental Science, 723(2), 022029. IOP Publishing. Kim, W. S., Peng, D. Q., Jo, Y. H., Nejad, J. G. & Lee, H. G. (2021). Responses of beef calves to long-term heat stress exposure by evaluating growth performance, physiological, blood and behavioral parameters. Journal of Thermal Biology, 100, 103033. Lees, A. M., Sejian, V., Wallage, A. L., Steel, C. C., Mader, T. L., Lees, J. C. & Gaughan, J. B. (2019). The impact of heat load on cattle. Animals, 9(6), 322. Loi, F., Pilo, G., Franzoni, G., Re, R., Fusi, F., Bertocchi, L., Santucci, U., Lorenzi, V., Rolesu, S. & Nicolussi, P. (2021). Welfare assessment: Correspondence analysis of welfare score and hematological and biochemical profiles of dairy cows in Sardinia, Italy. Animals, 11(3), 854. Lotfollahzadeh, S., Mohri, M., Bahadori, Sh. R., Dezfouly, M. R. & Tajik, P. (2008). The relationship between normocytic, hypochromic anaemia and iron concentration together with hepatic enzyme activities in cattle infected with Fasciola hepatica. J. Helminthol., 82(1), 85 - 88. doi: 10.1017/S0022149X07874232. Epub 2008 Jan 14. PMID: 18190732. Mair, B., Drillich, M., Klein-Jöbstl, D., Kanz, P., Borchardt, S., Meyer, L., Schwendenwein, I. & Iwersen, M. (2016). Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices. BMC Veterinary Research, 12, 34. https://doi.org/10.1186/s12917-016-0662-3. Mee, J. F. & Boyle, L. A. (2020). Assessing whether dairy cow welfare is “better” in pasture-based than in confinement-based management systems. New Zealand Veterinary Journal, 68(3), 168 - 177. Megahed, A. A, Hiew, M. W. H. & Constable, P. D. (2018). Clinical utility of plasma fructosamine concentration as a hypoglycemic biomarker during early lactation in dairy cattle. J. Vet. Intern. Med., 32(2), 846 - 852. Mircheva, Т. (2006). Fundamentals of clinical biochemistry in domestic animals. Enyovche, Sofia (Bg). Mulliniks, J. T. & Beard, J. K. (2019). Beef Species–Ruminant Nutrition Cactus Beef Symposium: Sustainable and economically viable management options for cow/calf production through enhanced beef cow metabolic efficiency. Journal of Animal Science, 97(3), 1398 - 1406. Nakajima, N. & Yayota, M. (2019). Grazing and cattle health: a nutritional, physiological, and immunological status perspective. Animal Behaviour and Management, 55(4), 143 - 153. Nasreldin, N. & Zaki, R. S. (2020). Biochemical and immunological investigation of fascioliasis in cattle in Egypt. Veterinary World, 13(5), 923 - 930. https://doi.org/10.14202/vetworld.2020.923-930. Nikolov, V., Karamfilov, S., Malinova, R. & Nikolov, S. (2022). Assessment of the welfare of cows of the Rhodopean shorthorn breed using blood biochemical parameters. Bulg. J. Agric.Sci., 28(Supplement 1), 21 - 30. Ortolani, E. L., Maruta, C. A., Barrêto Júnior, R. A., Mori, C. S., Antonelli, A. C., Sucupira, M. C. A. & Minervino, A. H. H. (2020). Metabolic profile of steers subjected to normal feeding, fasting, and re-feeding conditions. Veterinary Sciences, 7(3), 95. Radkowska, I. & Herbut, E. (2014). Hematological and biochemical blood parameters in dairy cows depending on the management system. Animal Science Papers & Reports, 32(4), 317. Reynolds, C. K. (2005). Glucose balance in cattle. Proceedings of the Florida Ruminant Nutrition Symposium; Gainesvilla, FL, USA. 2 February, 143 - 154. Rui, L. (2014). Energy metabolism in the liver. Comprehensive Physiology, 4(1), 177 - 197. https://doi.org/10.1002/cphy.c130024. Salazar, J. H. (2014). Overview of urea and creatinine. Laboratory Medicine, 45(1), e19-e20. Scholtz, M. M., McManus, C., Leeuw, K. J., Louvandini, H., Seixas, L., de Melo, C. B. & Neser, F. W. C. (2013). The effect of global warming on beef production in developing countries of the southern hemisphere. Natural Science, 5(1A), 106 - 119. Smid, A. M. C., Weary, D. M. & von Keyserlingk, M. A. (2020). The influence of different types of outdoor access on dairy cattle behavior. Frontiers in Veterinary Science, 7, 257. Spigarelli, C., Zuliani, A., Battini, M., Mattiello, S. & Bovolenta, S. (2020). Welfare assessment on pasture: A review on animal-based measures for ruminants. Animals, 10(4), 609. Tarantola, M., Biasato, I., Biasibetti, E., Biagini, D., Capra, P., Guarda, F. & Capucchio, M. T. (2020). Beef cattle welfare assessment: use of resource and animal-based indicators, blood parameters and hair 20β-dihydrocortisol. Italian Journal of Animal Science, 19(1), 341 - 350. Temple, D. & Manteca, X. (2020). Animal welfare in extensive production systems is still an area of concern. Frontiers in Sustainable Food Systems, 4, 545902. Walker, H. K., Hall, W. D. & Hurst, J. W. (1990). Clinical methods: the history, physical, and laboratory examinations. Chapter 193: BUN and Creatinine. 3rd edition. Boston: Butterworths Publishers, https://www.ncbi.nlm.nih.gov/books/NBK305/. Wang, S., Li, Q., Peng, J. & Niu, H. (2023). Effects of long-term cold stress on growth performance, behavior, physiological parameters, and energy metabolism in growing beef cattle. Animals, 13(10), 1619. Xu, W., Vervoort, J., Saccenti, E., Kemp, B., van Hoeij, R. J. & van Knegsel, A. T. M. (2020). Relationship between energy balance and metabolic profiles in plasma and milk of dairy cows in early lactation. Journal of Dairy Science, 103(5), 4795 - 4805. https://doi.org/10.3168/jds.2019-17777. Zaitsev, S. Y., Bogolyubova, N. V., Zhang, X. & Brenig, B. (2020). Biochemical parameters, dynamic tensiometry and circulating nucleic acids for cattle blood analysis: a review. Peer J., 8, 89 - 97. |
|
| Date published: 2025-10-28
Download full text