Phytochemical screening, anti-herpes simplex virus, and antibacterial activities of various fractions obtained from Graptopetalum paraguayense E. Walter extract
Nadezhda Markova

, Maya M. Zaharieva

, Petia Genova-Kalоu

, Stefka Krumova

, Ivayla Dincheva

, Ilian Badjakov

, Lyudmila Dimitrova

, Venelin Enchev

, Hristo Najdenski

Abstract: Our previous studies have demonstrated that the methanol/water extract of Graptopetalum paraguayense E. Walter (GP) significantly inhibits herpes simplex virus type 1 (HSV-1) and exhibits moderate activity against Gram-positive bacteria. We conducted a metabolic profile of the plant, yielding three fractions (A-polar metabolites, B-fatty acids, sterols, tocopherols, and C-phenolic components), which were analyzed using GC-MS. This study tested these fractions for cytotoxic, antibacterial, and anti-HSV activities in vitro. Cytotoxicity was tested on the Vero cell line. The HSV strains tested included two wild-type (wt) strains sensitive to acyclovir (ACV), Victoria (HSV-1) and Bja (HSV-2), and two clinical isolates resistant to ACV (ACVR), DD (HSV-1) and PU (HSV-2). Antibacterial activity was tested against the following bacterial strains, as per ISO Standard 20776-1: Staphylococcus aureus ATCC 29213, Staphylococcus aureus ATCC 12600, Enterococcus faecalis ATCC 29212, Escherichia coli 25922, and Pseudomonas aeruginosa ATCC 27853. Fraction C from GP selectively inhibited HSV-1 Victoria replication at 0.01 mg/mL, offering 94.5% cell protection. Its antiviral effect against acyclovir-resistant HSV strains was low (25.5% cell protection), with IC50 values ranging from 0.01 to 0.1 mg/mL, but superior to that of ACV (10.8% cell protection). This fraction demonstrated activity against Staphylococcus aureus (MIC Fraction C = 0.625 mg/mL) and inhibited methicillin-resistant S. aureus biofilm formation by 50%-90%. Phenolic fraction was non-cytotoxic and caused no skin irritation in rabbits, making it a promising candidate for antiviral drug development against HSV-1 and topical treatment for Gram-positive bacterial infections.
Keywords: anti-HSV activity; antibacterial effect; cytotoxicity; effective concentration 50 (EC50); Graptopetalum paraguayense E. Walter; minimal inhibitory concentration (MIC)
Citation: Markova, N., Zaharieva, M. M., Genova-Kalоu, P., Krumova, S., Badjakov, I., Dimitrova, L., Enchev, V. & Najdenski, H. (2025). Phytochemical screening, anti-herpes simplex virus, and antibacterial activities of various fractions obtained from Graptopetalum paraguayense E. Walter extract. Bulg. J. Agric. Sci., 31(5), 997–1011
| References: (click to open/close) | Abad, M. J., Guerra, J. A., Bermejo, P., Irurzun, A. & Carrasco, L. (2000). Search for antiviral activity in higher plant extracts. Phytotherapy Research, 14(8), 604 - 607. https://doi.org/610.1002/1099-1573(200012)200014:200018<200604::aid-ptr200678>200013.200010.co;200012-l. Andersen, D. O., Weber, N. D., Wood, S. G., Hughes, B. G., Murray, B. K. & North, J. A. (1991). In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antiviral Research, 16(2), 185 - 196. https://doi.org/110.1016/0166-3542(1091)90024-l. Andrighetti-Fröhner, C. R., Antonio, R. V., Creczynski-Pasa, T. B., Barardi, C. R. & Simões, C. M. (2003). Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz, 98(6), 843 - 848. https://doi.org/810.1590/s0074-02762003000600023. Bacon, T. H., Boon, R. J., Schultz, M. & Hodges-Savola, C. (2002). Surveillance for antiviral-agent-resistant herpes simplex virus in the general population with recurrent herpes labialis. Antimicrob Agents Chemother, 46(9), 3042 - 3044. https://doi.org/3010.1128/aac.3046.3049.3042-3044.2002. Bourne, K. Z., Bourne, N., Reising, S. F. & Stanberry, L. R. (1999). Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Research, 42(3), 219 - 226. https://doi.org/210.1016/s0166-3542(1099)00020-00020. Celum, C. L. (2004). The interaction between herpes simplex virus and human immunodeficiency virus. Herpes, 11 Suppl 1, 36a-45a. Chao, W. W., Chen, S. J., Peng, H. C. & Liao, J. W. (2019). Antioxidant activity of Graptopetalum paraguayense E. Walther leaf extract counteracts oxidative stress induced by ethanol and carbon tetrachloride co-induced hepatotoxicity in rats. Antioxidants (Basel), 8(8), 251 - 265. https://doi.org/210.3390/antiox8080251. Charlton, J. L. (1998). Antiviral activity of lignans. Journal of Natural Products, 61(11), 1447 - 1451. https://doi.org/1410.1021/np980136z. Chassagne, F., Samarakoon, T., Porras, G., Lyles, J. T., Dettweiler, M., Marquez, L., Salam, A. M., Shabih, S., Farrokhi, D. R. & Quave, C. L. (2021). A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Frontiers in Pharmacology, 11, 586548. https://doi.org/586510.583389/fphar.582020.586548. Chen, S.-J., Yen, C.-H., Liu, J.-T., Tseng, Y.-F. & Lin, P.-T. (2016). Anti-inflammatory effect of water extracts of Graptopetalum paraguayense supplementation in subjects with metabolic syndrome: a preliminary study. Journal of the Science of Food and Agriculture, 96(5), 1772 - 1776. https://doi.org/1710.1002/jsfa.7284. Chung, Y.-C., Chen, S.-J., Hsu, C.-K., Chang, C.-T. & Chou, S.-T. (2005). Studies on the antioxidative activity of Graptopetalum paraguayense E. Walther. Food Chemistry, 91(3), 419 - 424. https://doi.org/410.1016/j.foodchem.2004.1006.1022. Cryer, M., Lane, K., Greer, M., Cates, R., Burt, S., Andrus, M., Zou, J., Rogers, P., Hansen, M. D. H., Burgado, J., Satheshkumar, P. S., Day, C. W., Smee, D. F. & Johnson, F. B. (2017). Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharm Biol, 55(1), 1586 - 1591. https://doi.org/1510.1080/13880209.13882017.11310907. De Clercq, E. & Li, G. (2016). Approved Antiviral Drugs over the Past 50 Years. Clin Microbiol Rev, 29(3), 695 - 747. https://doi.org/610.1128/cmr.00102-00115. Dumford, D. M., 3rd & Skalweit, M. (2016). Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host. Infect Dis Clin North Am, 30(2), 465 - 489. https://doi.org/410.1016/j.idc.2016.1002.1008. Eid, O., Ezzat, S., Gonaid, M. & Choucry, M. (2018). Crassulaceae (chemistry and pharmacology) - A review. Future Journal of Pharmaceutical Sciences, 4(2), 234 - 240. El-Toumy, S. A., Salib, J. Y., El-Kashak, W. A., Marty, C., Bedoux, G. & Bourgougnon, N. (2018). Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. Food Science and Human Wellness, 7(1), 91 - 101. https://doi.org/110.1016/j.fshw.2018.1001.1001. Erdelmeier, C. A., Cinatl, J., Jr., Rabenau, H., Doerr, H. W., Biber, A. & Koch, E. (1996). Antiviral and antiphlogistic activities of Hamamelis virginiana bark. Planta Medica, 62(3), 241 - 245. https://doi.org/210.1055/s-2006-957868. EUCAST. (2019). Clinical breakpoints. Breakpoint tables for bacteria In, vol. 2020): European Sociaty of Clinical Microbiology and Infectious Diseases. Fatahzadeh, M. & Schwartz, R. A. (2007). Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol, 57(5), 737 - 763; quiz 764-736. https://doi.org/710.1016/j.jaad.2007.1006.1027. Frobert, E., Cortay, J. C., Ooka, T., Najioullah, F., Thouvenot, D., Lina, B. & Morfin, F. (2008). Genotypic detection of acyclovir-resistant HSV-1: characterization of 67 ACV-sensitive and 14 ACV-resistant viruses. Antiviral Research, 79(1), 28 - 36. https://doi.org/10.1016/j.antiviral.2008.1001.1153. Hassan, M. H. A., Elwekeel, A., Moawad, A., Afifi, N., Amin, E. & Amir, D. E. (2021). Phytochemical constituents and biological activity of selected genera of family Crassulaceae: A review. South African Journal of Botany, 141, 383 - 404. https://doi.org/310.1016/j.sajb.2021.1005.1016. Hsu, W. H., Chang, C. C., Huang, K. W., Chen, Y. C., Hsu, S. L., Wu, L. C., Tsou, A. P., Lai, J. M. & Huang, C. Y. F. (2015). Evaluation of the medicinal herb Graptopetalum paraguayense as a treatment for liver cancer. PLoS ONE, 10(4), e0121298. https://doi.org/0121210.0121371/journal.pone.0121298. Ikeda, T., Ando, J., Miyazono, A., Zhu, X. H., Tsumagari, H., Nohara, T., Yokomizo, K. & Uyeda, M. (2000). Anti-herpes virus activity of Solanum steroidal glycosides. Biological and Pharmaceutical Bulletin, 23(3), 363 - 364. https://doi.org/310.1248/bpb.1223.1363. ISO20776/1-2006. Clinical laboratory testing and in vitro diagnostic test systems — Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices - Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases, 2006, p.19. In. (2006)). European Committee for Standardization (CEN), Technical Committee CEN/TC 140, Technical Committee ISO/TC 212. ISO 10993-10:2010. (2016). Biological evaluation of medical devices — Part 10: Tests for irritation and skin sensitization. In). European Committee for Standardization (CEN): Technical Committee : ISO/TC 194 Biological and clinical evaluation of medical devices. Jhuang, H. J., Hsu, W. H., Lin, K. T., Hsu, S. L., Wang, F. S., Chou, C. K., Lee, K. H., Tsou, A. P., Lai, J. M., Yeh, S. F. & Huang, C. Y. (2015). Gluconeogenesis, lipogenesis, and HBV replication are commonly regulated by PGC-1alpha-dependent pathway. Oncotarget, 6(10), 7788 - 7803. https://doi.org/7710.18632/oncotarget.13050. Kandar, C. C. (2022). Medicinal Plants Against Herpes Simplex Virus (HSV) Type 2 Infections: Ethnopharmacology, Chemistry, Clinical, and Preclinical Studies. In D. Pal (Ed.), Anti-Viral Metabolites from Medicinal Plants, (pp. 1-40). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-83350-3_5-1. Kim, S. H., Jun, C. D., Suk, K., Choi, B. J., Lim, H., Park, S., Lee, S. H., Shin, H. Y., Kim, D. K. & Shin, T. Y. (2006). Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicological Science, 91(1), 123-131. https://doi.org/110.1093/toxsci/kfj1063. Kudi, A. C. & Myint, S. H. (1999). Antiviral activity of some Nigerian medicinal plant extracts. Journal of Ethnopharmacology, 68(1-3), 289 - 294. https://doi.org/210.1016/S0378-8741(1099)00049-00045. Lee, B.-H., Shen, S.-R., Lee, P.-S., Huang, X.-S., Chang, W.-C. & Wu, S.-C. (2023). Protective Effects of Graptopetalum paraguayense E. Walther against Methylglyoxal-Induced Liver Damage and Microflora Imbalances Caused by High-Fructose Induction. Fermentation, 9(4), 366. https://doi.org/310.3390/fermentation9040366. Lewis, K. (2017). New approaches to antimicrobial discovery. Biochemical Pharmacology, 134, 87 - 98. https://doi.org/10.1016/j.bcp.2016.1011.1002. Limaye, A. P. (2002). Ganciclovir-resistant cytomegalovirus in organ transplant recipients. Clinical Infectious Diseases, 35(7), 866 - 872. https://doi.org/810.1086/342385. Lin, L. T., Chen, T. Y., Chung, C. Y., Noyce, R. S., Grindley, T. B., McCormick, C., Lin, T. C., Wang, G. H., Lin, C. C. & Richardson, C. D. (2011). Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol, 85(9), 4386 - 4398. https://doi.org/4310.1128/jvi.01492-01410. Lin, L. T., Hsu, W. C. & Lin, C. C. (2014). Antiviral natural products and herbal medicines. J Tradit Complement Med, 4(1), 24-35. https://doi.org/10.4103/2225-4110.124335. Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. L., Huffman, J. H. & Kern, E. R. (1999). Antiviral activities of biflavonoids. Planta Medica, 65(2), 120 - 125. https://doi.org/110.1055/s-1999-13971. Lucera, A., Costa, C., Conte, A. & Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in microbiology, 3, 287. https://doi.org/210.3389/fmicb.2012.00287. Martin, S. F. (1987). The Amaryllidaceae Alkaloids. In Alkaloids: Chemistry and Pharmacology, 30, 251 - 376. Monto, A. S. (2006). Vaccines and antiviral drugs in pandemic preparedness. Emerg Infect Dis, 12(1), 55 - 60. https://doi.org/10.3201/eid1201.051068. Mosmann, T. R. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55 - 63. https://doi.org/10.1016/0022-1759(1083)90303-90304. Nwadinigwe, A. O. (2011). Antimicrobial activities of methanol and aqueous extracts of the stem of Bryophyllum pinnatum Kurz (Crassulaceae). African Journal of Biotechnology, 10(72), 16342 - 16346. https://doi.org/16310.15897/AJB16311.11000. Ordanel, A. M., Gangoso, S. J. M., Andallon, J. L., Pacifico, R. M. L., Sarabia, J. A. T., Yerro, E. B. S., Arabaca, M. L. C., Cataluña, E. M. & Caipang, C. M. A. (2023). Antibacterial activities from aqueous and ethanolic extracts of selected succulent plants. International Journal of Biosciences, 22(2), 111 - 119. http://dx.doi.org/110.12692/ijb/12622.12692.12111-12119. Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., RamaKrishna, S. & Berto, F. (2020). Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants (Basel), 9(12), 1309. https://doi.org/1310.3390/antiox9121309. Peng, H.-Y., Lin, Y.-F., Chen, Y.-H. & Chou, S.-T. (2023). The cytotoxic effects of Graptopetalum paraguayense (N.E.Br.) E. Walther extract on human melanoma cells. Journal of Herbal Medicine, 40, 100675. https://doi.org/100610.101016/j.hermed.102023.100675. Rajbhandari, M., Wegner, U., Jülich, M., Schöpke, T. & Mentel, R. (2001). Screening of Nepalese medicinal plants for antiviral activity. Journal of Ethnopharmacology, 74(3), 251 - 255. https://doi.org/210.1016/s0378-8741(1000)00374-00373. Raskin, I., Ribnicky, D. M., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno, D. A., Ripoll, C., Yakoby, N., O'Neal, J. M., Cornwell, T., Pastor, I. & Fridlender, B. (2002). Plants and human health in the twenty-first century. Trends in Biotechnology, 20(12), 522 - 531. https://doi.org/510.1016/S0167-7799(1002)02080-02082. Reed, L. J. & Muench, H. (1938). A simple method of estimating fifty per cent endpoints American Journal of Epidemiology, 27(3), 493 - 497. https://doi.org/410.1093/oxfordjournals.aje.a118408. Serkedjieva, J. & Hay, A. J. (1998). In vitro anti-influenza virus activity of a plant preparation from Geranium sanguineum L. Antiviral Research, 37(2), 121 - 130. https://doi.org/110.1016/S0166-3542(1097)00067-00063. Simões, C. M., Amoros, M. & Girre, L. (1999). Mechanism of antiviral activity of triterpenoid saponins. Phytotherapy Research, 13(4), 323-328. https://doi.org/310.1002/(SICI) 1099 - 1573 (199906)199913:199904<199323::AID-PTR199448>199903.199900.CO;199902-C. Singh, A., Prasad, R., Balasubramanian, V. & Gupta, N. (2020). Drug-Resistant Tuberculosis and HIV Infection: Current Perspectives. HIV/AIDS (Auckland, N.Z.), 12, 9 - 31. https://doi.org/10.2147/HIV.S193059. Smee, D. F., Morrison, A. C., Barnard, D. L. & Sidwell, R. W. (2002). Comparison of colorimetric, fluorometric, and visual methods for determining anti-influenza (H1N1 and H3N2) virus activities and toxicities of compounds. Journal of Virological Methods, 106(1), 71 - 79. https://doi.org/10.1016/S0166-0934(1002)00137-00134. Stepanović, S., Vukovic, D., Dakic, I., Savic, B. & Svabic-Vlahovic, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175 - 179. https://doi.org/110.1016/S0167-7012(1000)00122-00126. Takeuchi, H., Baba, M. & Shigeta, S. (1991). An application of tetrazolium (MTT) colorimetric assay for the screening of anti-herpes simplex virus compounds. Journal of Virological Methods, 33(1), 61 - 71. https://doi.org/10.1016/0166-0934(1091)90008-N. Todorova, N., Rangelov, M., Dincheva, I., Badjakov, I., Enchev, V. & Markova, N. (2022). Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting of herpes simplex virus DNA polymerase – metabolome profiling, molecular docking and quantum-chemical analysis. Pharmacia, 69(1), 113 - 123. https://doi.org/110.3897/pharmacia.3869.e79467. Tsai, Y., Cole, L. L., Davis, L. E., Lockwood, S. J., Simmons, V. & Wild, G. C. (1985). Antiviral properties of garlic: in vitro effects on influenza B, herpes simplex and coxsackie viruses. Planta Medica, 51(5), 460 - 461. https://doi.org/410.1055/s-2007-969553. Ürményi, F. G. G., Saraiva, G. d. N., Casanova, L. M., Matos, A. d. S., de Magalhães Camargo, L. M., Romanos, M. T. V. & Costa, S. S. (2016). Anti-HSV-1 and HSV-2 flavonoids and a new kaempferol triglycoside from the medicinal plant Kalanchoe daigremontiana. Chemistry & Biodiversity, 13(12), 1707 - 1714. https://doi.org/1710.1002/cbdv.201600127. Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A. & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis, 14(8), 742 - 750. https://doi.org/710.1016/s1473-3099(1014)70780-70787. van Meerloo, J., Kaspers, G. J. & Cloos, J. (2011). Cell sensitivity assays: the MTT assay. Methods in Molecular Biology, 731, 237-245. https://doi.org/210.1007/1978-1001-61779-61080-61775_61720. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C. & Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, 9(10), 2041. https://doi.org/2010.3390/microorganisms9102041. Varadinova, T., Vilhelmova, N., Badenas, F., Terron, A., Fiol, J., Garcia-Raso, A. & Genova, P. (2005). Effect of metal complexes of acyclovir and its acetylated derivative on Herpes simplex virus 1 and Herpes simplex virus 2 replication. Acta Virol, 49(4), 251 - 260. Whitley, R. J., Kimberlin, D. W. & Roizman, B. (1998). Herpes Simplex Viruses. Clinical Infectious Diseases, 26(3), 541 - 555. https://doi.org/510.1086/514600. Woolhouse, M. E., Taylor, L. H. & Haydon, D. T. (2001). Population biology of multihost pathogens. Science, 292(5519), 1109 - 1112. https://doi.org/1110.1126/science.1059026. Wright, G. D. (2014). Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol, 60(3), 147 - 154. https://doi.org/110.1139/cjm-2014-0063. Wu, P.-C., Fann, M.-J., Tran, T. T., Chen, S.-C., Devina, T., Cheng, I. H.-J., Lien, C.-C., Kao, L.-S., Wang, S.-J., Fuh, J.-L., Tzeng, T.-T., Huang, C.-Y., Shiao, Y.-J. & Wong, Y.-H. (2019). Assessing the therapeutic potential of Graptopetalum paraguayense on Alzheimer’s disease using patient iPSC-derived neurons. Scientific Reports, 9(1), 19301. https://doi.org/19310.11038/s41598-19019-55614-19309. Xu, F., Wang, C., Wang, H., Xiong, Q., Wei, Y. & Shao, X. (2018). Antimicrobial action of flavonoids from Sedum aizoon L. against lactic acid bacteria in vitro and in refrigerated fresh pork meat. Journal of Functional Foods, 40, 744 - 750. https://doi.org/710.1016/j.jff.2017.1009.1030. Yen, C.-H., Chen, S.-J., Liu, J.-T., Tseng, Y.-F. & Lin, P.-T. (2013). Effects of water extracts of Graptopetalum paraguayense on blood pressure, fasting glucose, and lipid profiles of subjects with metabolic syndrome. Biomed Res Int, 2013, 809234. https://doi.org/809210.801155/802013/809234. Zaharieva, M. M., Genova-Kalоu, P., Dincheva, I., Badjakov, I., Krumova, S., Enchev, V., Najdenski, H. & Markova, N. (2019). Anti-herpes simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: a pilot study. Biotechnology & Biotechnological Equipment, 33(1), 1251 - 1259. https://doi.org/1210.1080/13102818.13102019.11656108. |
|
| Date published: 2025-10-28
Download full text