Evaluation of pea germplasm for drought resistance
Vus Nadiia

, Vasylenko Antonina

, Shevchenko Larysa

, Shtelma Andriy, Glyantsev Andriy

, Besuhla Olha

Abstract: Drought is a serious threat to grain pulse production worldwide. One of the most widely grown grain legumes in the world is pea (Pisum sativum L.). Twenty-four pea varieties from diverse ecological and geographical origins, types, and breeding years were evaluated under laboratory conditions to define further the drought resistance level of the pea source material. PEG-6000 concentrations of 8.6% and 10% were used for the evaluation of drought resistance of pea accessions. Four cultivars (Kamelot, Baryton, Mascara, and Kharkivskyy yantarnyy) were selected. They outperformed the control and will be used as sources of drought resistance in further breeding work. It is also important to note the accessions Tsarevich and Malakhit, which showed a stable root length at the level of the control at both concentrations of PEG-6000.
Keywords: accessions; concentration; differentiation; PEG 6000; Pisum sativum L.; polyethylene glycol
Citation: Vus, N., Vasylenko, A., Shevchenko, L., Shtelma, A., Glyantsev, A. & Besuhla, O. (2025). Evaluation of pea germplasm for drought resistance. Bulg. J. Agric. Sci., 31(5), 917–923
| References: (click to open/close) | Al Azzawi, T. N. I., Khan, M., Hussain, A., Shahid, M., Imran, Q. M., Mun, B.-G., Lee, S.-U. & Yun, B.-W. (2020). Evaluation of Iraqi rice cultivars for their tolerance to drought stress. Agronomy, 10(11), 1782. Alvino, A. & Leone, A. (1993). Response to low soil water potential in pea genotypes (Pisum sativum L.) with different leaf morphology. Scientia Horticulturae, 53(1–2), 21 - 34. Amede, T. & Schubert, S. (2003). Mechanisms of drought resistance in grain legumes I: Osmotic adjustment. SINET: Ethiopian Journal of Science, 26(1), 137 - 146. Asati, R., Tripathi, M. K., Tiwari, S., Yadav, R. K., Chauhan, S., Tripathi, N., Solanki, R. S. & Sikarwar, R. S. (2023). Screening of chickpea (Cicer arietinum L.) genotypes against drought stress employing polyethylene glycol 6000 as selecting agent. International Journal of Plant & Soil Science, 35(19), 2155 - 2169. Bagheri, M., Santos, C. S., Rubiales, D. & Vasconcelos, M. W. (2023). Challenges in pea breeding for tolerance to drought: Status and prospects. Annals of Applied Biology, 183(2), 108 - 120. Baigorri, H., Antolı́n, M. C. & Sánchez-Dı́az, M. (1999). Reproductive response of two morphologically different pea cultivars to drought. European Journal of Agronomy, 10(2), 119 - 128. Bénézit, M., Biarnès, V. & Jeuffroy, M.-H. (2017). Impact of climate and diseases on pea yields: what perspectives with climate change? OCL, 24(1), 103. Chaghakaboodi, Z. & Dogan, H. (2021). Evaluation of drought indices in rapeseed (Brassica napus L.). Agrotechniques in Industrial Crops, 1(2), 97 - 102. El-Rawy, M. A. E. & Youssef, M. (2014). Evaluation of drought and heat tolerance in wheat based on seedling traits and molecular analysis. J. Crop Sci. Biotechnol., 17, 183 - 189. FAOSTAT (2023). https://www.fao.org/faostat. Fatokun, C., Boukar, O. & Muranaka, S. (2012). Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant Genetic Resources, 10(3), 171 - 176. Henry, L. & Wickham, H. (2023). rlang: Functions for Base Types and Core R and 'Tidyverse' Features. R package version 1.1.1. Iglesias-García, R., Prats, E., Flores, F., Amri, M., Mikić, A. & Rubiales, D. (2017). Assessment of field pea (Pisum sativum L.) grain yield, aerial biomass and flowering date stability in Mediterranean environments. Crop and Pasture Science, 68(11), 915 - 923. Kausar, A., Zahra, N., Zahra, H., Hafeez, M. B., Zafer, S., Shahzadi, A., Raza, A., Djalovic, I. & Prasad, P. V. (2023). Alleviation of drought stress through foliar application of thiamine in two varieties of pea (Pisum sativum L.). Plant Signal Behav., 18(1), 2186045. Khatun, M., Sarkar, S., Era, F.M., Islam, A. K. M. M., Anwar, M. P., Fahad, S., Datta, R. & Islam, A. K. M. A. (2021). Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy, 11(12), 2374. Kobyzeva, L., Besuhla, O., Vus, N., Biryukova, O. & Tertyshnyy, O. (2016). Genetic resources of legumes and millet with signs of resistance to abiotic factors. In: Management Principles of Field Crop Production Process, Plant Production Institute na V. Ya. Yuriev of NAAS, Kharkiv, Ukraine, 70 - 97 (Ukr.) Missanga, J. S., Venkataramana, P. B. & Ndakidemi, P. A. (2023). Lablab purpureus: evaluation and selection of drought-tolerant - high-yielding accessions in dry farming systems based on drought tolerance indices and multi-environmental yield trials. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 29(2), 690 - 709. Miyazawa, Y. & Takahashi, H. (2020). Molecular mechanisms mediating root hydrotropism: what we have observed since the rediscovery of hydrotropism. J. Plant Res. Jan., 133(1), 3 - 14. Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X. & Qiu, L. (2019). Research progress and perspective on drought stress in legumes: A Review. Int. J. Mol. Sci., 20(10), 2541. Orek, Ch., Gruissem, W., Ferguson, M. & Vanderschuren, H. (2020). Morpho-physiological and molecular evaluation of drought tolerance in cassava (Manihot esculenta Crantz). Field Crops Research, 255, 107861. R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Sai Kachout, S., Ennajah, A., Srarfi, F. & Zoghlami, A. (2021). Salt and drought stress effects on germination and seedling growth on field pea (Pisum sativum L.). Journal of New Sciences, Agriculture and Biotechnology, 81(7), 4745 - 4757. Sánchez, F. J., De Andrés, E. F., Tenorio, J. L. & Ayerbe, L. (2004). Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research, 86(1), 81 - 90. Schauberger, P. & Walker, A. (2022) openxlsx: Read, Write and Edit xlsx Files_. R package version 4.2.5.1. https://CRAN.R-project.org/package=openxlsx. Tamindžić, G., Červenski, J., Milošević, D., Vlajić, S., Nikolić, Z. & Ignjatov, M. (2021). The response of garden pea cultivars to simulated drought. Acta Agriculturae Serbica, 26(52), 167 - 173. Tan, W., Li, W., Li, J., Liu, D. & Xing, W. (2023). Drought resistance evaluation of sugar beet germplasms by response of phenotypic indicators. Plant Signaling & Behavior, 18(1), 2192570. Tran, C. T., Beissinger, T. M., Becker, H. C. & Horneburg, B. (2023). Genetic diversity of pea (Pisum sativum L.) genotypes differing in leaf type using SNP markers. Genetic Resources and Crop Evolution, 70(4), 1085 - 1095. Tsuda, S., Miyamoto, N., Takahashi, H., Ishihara, K. & Hirasawa, T. (2003). Roots of Pisum sativum L. exhibit hydrotropism in response to a water potential gradient in vermiculite. Ann. Bot., 92(6), 767 - 770. Vus, N., Vasylenko, A., Lutenko, V., Kobyzeva, L., Besuhla, O., Shevchenko, L., Ponurenko, S., Feng, B. & Saliy, D. (2020). Concentration effect of polyethylene glycol in evaluation of grain legumes for drought tolerance. Žemes Ūkio Mokslai, 27(2), 149 – 159. Vus, N., Vasylenko, A. & Shevchenko, L. (2021). Differentiation of accessions from the national lentil collection according to the level of drought resistance on a various concentrations PEG-6000 solution. Faktori Eksperimentalnoi Evolucii Organizmiv, 29, 68 – 73. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. Yan, C., Song, S., Wang, W., Wang, C., Li, H., Wang, F., Li, S. & Sun, X. (2020). Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biol., 20, 321. |
|
| Date published: 2025-10-28
Download full text