Molecular identification and characterization of isolated bacteria from beef meat by 16s rRNA gene analysis
Noor Muthanna Mahmood

, Mohammed Munis Dakheel

Abstract: The present study is focused on the molecular identification of 16s rRNA genes, identifying bacterial strains from local beef shops, and analyzing the patterns of PCR products collected from various stores in Baghdad, Iraq. For the purpose of this study, twenty beef steak samples were randomly chosen from nearby marketplaces. The total number of bacteria was counted to identify various bacterial strains presented in the samples. PCR methods were used to detect 16S rRNA extraction patterns and DNA gene primer preparation patterns, and the results revealed bacterial contamination of meat, specifically beef, sold in local butcher shops. Moreover, these 16S ribosomal RNA genes were identified via the corresponding Genbank accession codes and through molecular identification of many bacterial species, including Staphylococcus warneri, Serratia marcescens, Klebsiella oxytoca, and Raoultella ornithinolytica; however, the most dominant bacterial species were Serratia marcescens, which was identified utilizing 16S rRNA and DNA sequences examined utilizing nucleotide BLAST alignment techniques. In brief, the findings of this study indicated that beef exposure to various environmental factors in Boucher shops significantly influenced beef growth, especially that of several bacterial species; further research is thus required to identify additional specific genes for additional bacterial types.
Keywords: 16S rRNA; Beef meat; DNA genes; molecular detection; total bacterial count
Citation: Mahmood, N. M. & Dakheel, M. M. (2025). Molecular identification and characterization of isolated bacteria from beef meat by 16s rRNA gene analysis. Bulg. J. Agric. Sci., 31(4), 800–806.
References: (click to open/close) | Abdlla, A. Y. & Al-Sanjary, R. A. (2023). The molecular identification of diarrheagenic Escherichia coli (DEC) isolated from meat and meat products. Iraqi Journal of Veterinary Sciences, 9 - 15. doi:10.33899/ijvs.2022.133244.2192. Alyousif, A. J. (2022). Molecular identification and assessment of bacterial contamination of frozen local and imported meat and chicken in Basrah, Iraq using 16S rDNA gene. Biodiversitas Journal of Biological Diversity, 23(3). doi:10.13057/BI. Ali, S. (2013). The Bacteria Contamination of Red Local and Imported Meat. Iraqi Journal of Science, 54(2), 249 - 254. Retrieved from https://www.iasj.net/iasj/article/73630. Alttai, N., Al-Sanjary, R. & Sheet, O. (2023). Detection of some virulence genes Stx1, Stx2, and rfb of Escherichia coli isolated from fish in Nineveh governorate, Iraq. Iraqi Journal of Veterinary Sciences, 37(2), 453 - 457. doi:10.3399/ijvs.2022.136232.2571. Al-Zahrani, N. & Bukhari, K. (2019). Molecular Identification, Gene Detection, and Improving L-Methioninase Production of Serratia SP. Isolate. Pharmacophore, 10(6), 14 - 25. Barbin, D. F., El Masry, G., Sun, D.-W., Allen, P. & Morsy, N. (2013). Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innovative. Innovative Food Science & Emerging Technologies, 17, 190 - 191. doi:10.1016/j.ifset.2012.11.001. Barbin, Z. (2022). Molecular study of bacteria isolated from meat and chicken frozen from Misan Governorate market in Iraq. Biodiversitas Journal of Biological Diversity, 23(1). doi:10.13057/BIODIV/D230111. Cauchie, E., Delhalle, L., Taminiau, B., Tahiri, A., Korsak, N., Burteau, S., Fall, P. A., Farnir, F., Baré, Gh. & Daube, G. (2020). Assessment of spoilage bacterial communities in food wrap and modified atmospheres-packed minced pork meat samples by 16S rDNA metagenetic analysis. Front Microbiology, 10, 3074. doi:10.3389/fmicb.2019.03074. Dakheel, M., Al-Mnaser, A., Quijada, J., Woodward, M. & Rymer, C. (2021). Use of tannin-containing plants as antimicrobials influencing the animal health. The Iraqi Journal of Veterinary Medicine, 45(2), 33 - 40. doi:10.30539/IJVM.V45I2.1258. Doulgeraki, A. I., Ercolini, D., Villani, F. & Nychas, G.-J. E. (2012). Spoilage microbiota associated to the storage of raw meat in different conditions. International journal of food microbiology. International Journal of Food Microbiology, 157(2), 130 - 141. doi:10.1016/j.ijfoodmicro.2012.05.020. Gorbunova, N. A. (2019). Low-temperature atmospheric-pressure plasma in microbial decontamination and meat technology. A review. Theory and Practice of Meat Processing, 21 - 29. doi:10.21323/2414-438X-2019-4-1-21-29. Habib, I., Harb, A., Hansson, I., Vågsholm, I., Osama, W., Adnan, S., Anwar, M., Agamy, N. & Boqvist, S. (2020). Challenges and Opportunities towards the Development of Risk Assessment at the Consumer Phase in Developing Countries-The Case of Campylobacter Cross-Contamination during Handling of Raw Chicken in Two Middle Eastern Countries. Pathogens, 9(1), 62. doi:10.3390/pathogens9010062. Hadab, N. & Dakheel, M. (2022). Application of pomegranate pomace as a natural antibacterial and antioxidant preservative in beef. Proceedings of the 7th (1st International) Scientific Conference, College of Veterinary Medicine, University of Mosul, (211-216). Mosul. doi:10.33899/IJVS.2022.135929.2544. Hamzah, A. (2010). The isolation and identification of the important pathogenic bacteria from fresh meat. The Iraqi Journal of Veterinary Medicine, 34(1). doi:10..30539/IRAQIJVM.V3411.659. Koluman, A. & Dikici, A. (2013). Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends. Critical Reviews In Microbiology, 39(1), 57 - 69. doi:10.3109/10408412012.691458. Kornienko, V. Y., Fomina, T. & Minaev, M. Y. (2022). Review of new technologies used for meat identification. Theory and Practice of Meat Processing, 7(2), 131 - 137. doi:10.21323/2414-438X-2022-7-2-131-137. Mahamed, A., Ibrahem, M. W. & Sadiq, N. H. (2017). The Bacteria contamination of red local meat and white imported meat in Samaraa and Al-Dour districts. Annals of Agric. Sci. Moshtohor., 55(4), 831 - 836. doi:10.21608/ASSJM.2017.57017. Mahmood, N. M. & Dakheel, M. M. (2023). Impact of different concentrations of tannic acid on various bacteria isolated from beef meat. Ann. For. Res., 66(1), 2509 - 2517. Retrieved from https://www.e-afr.org/article/view-2023/pdf/2509.pdf. Qader, M. & AlKahafaji, M. (2019). Detection of bacterial contamination of imported chicken meat in Iraq. Iraqi Journal of Science, 60(9), 1957 - 1966. doi:10.24996/IJS.2019.60.9.8. Rani, R. Z., Mhlongo, L. C. & Hugo, A. (2023). Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets. International Journal of Enviromental Research and Public Health, 20(3), 1986. doi:10.3390/ijerph20031986 Sheng, L. & Wang, L. (2021). The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr. Rev. Food Sci. Food Saf., 20(1), 738 - 786. doi:10.1111/1541-4337.12671. Sofos, J. N. (2014). Meat and meat products. Food Safety Management, 119 - 162. Academic Press. doi:10.1016/B978-0-12-381504-0.00006-8. Tanura, K., Nei, M. & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101, 11030 - 11035. doi:10.1073/pnas.0404206101. Todd, E. (2020). Food-borne disease prevention and risk assessment. Int. J. Environ. Res. Public Health., 17(14), 5129. doi:10.3390/ijerph17145129. White, D., Zhao, S., Simjes, S., Wagner, D. & McDermott, P. (2022). Antimicrobial resistance of foodborne pathogens. Micobes and Infection, 4(4), 405 - 412. doi:10.1016/s12864579(02)01554-x. |
|
| Date published: 2025-08-27
Download full text