Suitability of colloidal Nano Gold for application in performing allelopathic screening studies in laboratory conditions
Plamen Marinov-Serafimov

Abstract: Nanomaterials are widely used in medicine and industry, while in agriculture their application is relatively limited, but they have the potential to be included in screening studies to establish allelopathic interference in plant communities. Therefore, a key element is to establish the suitability of nanomaterials for introduction when performing screening allelopathic studies in a laboratory setting. In this aspect, the impact of eleven concentrations colloidal Nano Gold Gold-Rubin with nanoparticles 20 ppm on seed germination and initial development of Lactuca sativa L. variety Great Lakes and Medicago sativa L. variety Pleven 6 under laboratory conditions. It was found that applied higher concentrations (from 5.0 to 20.0 ppm) of colloidal Nano Gold in L. sativa and M. sativa, had an indifferent effect on the global germination index (GI) of the test plants, allowing concentrations of 20.0 ppm, to be used in performing allelopathic studies under laboratory conditions with both crops. However, a disproportionate influence on the biometric indicators of the test plants included in the study was found with increasing Gold-Rubin concentrations applied, suggesting the need for further research related to combined application with aqueous extracts or hydrolates of plants with proven allelopathic potential, including validation in vessel trials and greenhouse conditions.
Keywords: allelopathy; biotest; inhibition; nano solutions; nanoparticles
Citation: Marinov-Serafimov, P. (2025). Suitability of colloidal Nano Gold for application in performing allelopathic screening studies in laboratory conditions. Bulg. J. Agric. Sci., 31(4), 759–771.
References: (click to open/close) | Abdelmalik, A., Alshahrani, T., Alqarawi, A. & Ahmed, E. (2024). Allelopathic potential of Nicotiana glauca aqueous extract on seed germination and seedlings of Acacia gerrardii. Diversity, 16(1), 26. https://doi.org/10.3390/d16010026. Acharya, P., Jayaprakasha, G., Crosby, K., Jifon, J. & Patil, B. (2020). Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10, 5037. https://doi.org/10.1038/s41598-020-61696-7. Albanese, A., Tang, P. & Chan, W. (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1 - 16. doi: 10.1146/annurev-bioeng-071811-150124. Alshehddi, L. & Bokhari, N. (2020). Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the South-Western regions in Saudi Arabia. Saudi Journal of Biological Sciences, 27(1), 574 - 580. doi: 10.1016/j.sjbs.2019.11.013. Alsaadawi, I., Khaliq, A. & Farooq, M. (2020). Integration of allelopathy and less herbicides effect on weed management in field crops and soil biota: a review. Plant Archives, 20(2), 225 - 237. Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. & Zaidi, M. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66(3), 303 - 310. DOI. 10.1007/s10725-011-9649-z. Asli, S. & Neumann, M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 32(5), 577 - 584. https://doi.org/10.1111/j.1365-3040.2009.01952.x. Ayeb-Zakhama, A. & Harzallah-Skhiri, F. (2016). Allelopathic activity of extracts of Citharexylum spinosum L. from Tunisia. Journal of Plant Breeding and Crop Science, 8(10), 189 - 196 DOI: 10.5897/JPBCS2015.0501. Bai, S., Ashwini, R. & Geetha, K. (2022). Allelopathy in weed management - a review. Mysore Journal of Agricultural, 56(3), 1 - 15. Bandi, R., Dadigala, R. & Alle, M. (2023). Chapter 5 - Emerging role of gold nanoparticles for healthier crop plants growth and enhanced yield. Editor(s): Husen A. In: Plant Biology, sustainability and climate change. Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management. Academic Press, 125 - 143. https://doi.org/10.1016/B978-0-323-91933-3.00014-3. Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A. & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75(7), 850 - 857. doi: 10.1016/j.chemosphere.2009.01.078. Belter, P. & Cahill, J. (2015). Disentangling root system responses to neighbours: identification of novel root behavioural strategies. AoB PLANTS, 7, plv059. https://doi.org/10.1093/aobpla/plv059. Bonanomi, G., Sicurezza, M., Caporaso, S., Esposito, A. & Mazzoleni, S. (2006). Phytotoxicity dynamics of decaying plant materials. New Phytologyst, 169(3), 571 - 578. https://doi.org/10.1111/j.1469-8137.2005.01611.x. Carvalho-Moore, P., Rangani, G., Heiser, J., Findley, D., Bowe, S. & Roma-Burgos, N. (2021). PPO2 mutations in Amaranthus palmeri: Implications on Cross-Resistance. Agriculture, 11(8), 760. https://doi.org/10.3390/agriculture11080760. Choudhary, C., Behera, B., Raza, M., Mrunalini, Bhoi,T., Lal, M., Nongmaithem, D., Pradhan, S., Song, B. & Das, T. (2023). Mechanisms of allelopathic interactions for sustainable weed management. Rhizosphere, 25, 100667. https://doi.org/10.1016/j.rhisph.2023.100667. Duke, S. (2015). Proving allelopathy in crop–weed interactions. Weed Science, 63(SP1), 121 – 132. https://doi.org/10.1614/d13- 00130.1. Dykman, L. & Shchyogolev, S. (2018). Chapter 6 - The effect of gold and silver nanoparticles on plant growth and development. In: Metal Nanoparticles. Editors: Y. Saylor and V. Irby. Nova Science Publishers, Inc. ISBN: 978-1-53614-115-3. El-Kenany, E., El-Darier, S., Abdellatif, A. & Shaklol, S. (2017). Allelopathic potential of invasive species: Nicotiana glauca Graham on some ecological and physiological aspects of Medicago sativa L. and Triticum aestivum L. Rendiconti Lincei, 28(1), 159 - 167 https://doi.org/10.1007/s12210-016-0587-6. Fernandez-Quintanilla, C., Quadranti, M., Kudsk, P. & Ba` Rberi, P. (2008). Which future for weed science? Weed Research, 48(4), 297 - 301. doi:10.1111/j.1365-3180.2008.00642.x. Ferrari, E., Barbero, F., Busquets-Fité, M., Franz-Wachtel, M., Köhler, H., Puntes, V. & Kemmerling, B. (2021). Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings. Nanomaterials (Basel), 11(12), 3161. doi: 10.3390/nano11123161. Gaines, T., Duke, S., Morran, S., Rigon, C., Tranel, P., Küpper, A. & Dayan, F. (2020). Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 295(30), 10307 - 10330. doi: 10.1074/jbc.REV120.013572. Gao, M., Chang, J., Wang, Z., Zhang, H. & Wang, T. (2023). Advances in transport and toxicity of nanoparticles in plants. Journal of Nanobiotechnology, 21, 75. doi: 10.1186/s12951-023-01830-5. Gariglio, N., Buyatti, M., Pillati, R., Gonzales, R. & Acosta, M. (2002). Use a germination biossay to test compost maturity of willow (Salix sp.) sawdust. New Zealand Journal of Crop of Horticultural Science, 30, 135 – 139. Golubinova, I., Nikolov, B., Petrova, S., Velcheva, I., Valcheva, E. & Marinov-Serafimov P. (2020). Effect of Cycocel 750 SL on germination and initial development of some Sorghum species. Ecologia Balkanica, 12(1), 11 - 19. Grillo, R., Mattos, B., Antunes, D., Forini, M., Monikh, F. & Rojas, O. (2021). Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 37, 101078. doi: 10.1016/j.nantod.2021.101078. Hickman, D., Comont, D., Rasmussen, A. & Birkett, M. (2023). Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecology and Evolution, 13(4), e10018. https://doi.org/10.1002/ece3.10018. Hussain, M., Abideen, Z., Danish, S., Asghar, M. & Iqbal, K. (2021). Integrated weed management for sustainable agriculture. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 52. Springer, Cham. https://doi.org/10.1007/978-3-030-73245-5_11. ISTA (2024). International Rules for Seed Testing, Introduction, i–I-6 (14) https://doi.org/10.15258/istarules. Jabran, K. (2017). Sorghum allelopathy for weed control. In: K. Jabran, Manipulation of allelopathic crops for weed control. Springer Briefs in Plant Science, Springer International Publishing AG, Switzerland, 65 - 75. Jabran, K., Mahajan, G., Sardana, V. & Chauhan, B. (2015). Allelopathy for weed control in agricultural systems. Review. Crop Protection, 72, 57 - 65. https://doi.org/10.1016/j.cropro.2015.03.004. Kah, M., Tufenkji, N. & White, J. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 14, 532 - 540. doi: 10.1038/s41565-019-0439-5. Kato-Noguchi, H. (2024). Isolation and identification of allelochemicals and their activities and functions. Journal of Pesticide Scien., 49(1), 1 - 14. doi: 10.1584/jpestics. Khamare, Y., Chen, J. & Marble, S. (2022). Allelopathy and its application as a weed management tool: A review. Front Plant Science, 28(13), 1034649. doi: 10.3389/fpls. Kostina-Bednarz, M., Płonka, J. & Barchanska, H. (2023). Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Reviews in Environmental Science and Bio/Technology, 22, 471 - 504. https://doi.org/10.1007/s11157-023-09656-1. Krishnaraj, C., Jagan, E., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids. Surf. B. Biointerfaces, 76(1), 50 - 56. doi: 10.1016/j.colsurfb.2009.10.008. Légère, A., Stevenson, F. & Benoit, D. (2005). Diversity and assembly of weed communities: contrasting responses across cropping systems. Weed Research, 45(4), 303 - 315. https://doi.org/10.1111/j.1365-3180.2005.00459.x. Li, H., Ye, X., Guo, X., Geng, Z. & Wang, G. (2016). Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. Journal of Hazardous Materials, 314(15), 188 - 196. doi: 10.1016/j.jhazmat.2016.04.043. Li, Y., Feng, Y., Kang, Z., Zheng, Y., Zhang, J. & Chen, Y. (2017). Changes in soil microbial communities due to biological invasions can reduce allelopathic effects. Journal of Applied Ecology, 54(5), 1281 - 1290. https://doi.org/10.1111/1365-2664.12878. Lin, D. & Xing, B. (2007). Phytotoxicity of nanoparticles inhibition and seed germination and root growth. Environmental Pollution, 150(2), 243 - 250.https://doi.org/10.1016/j.envpol.2007.01.016. Lyu, J., Park, J., Pandey, L., Choi, S., Lee, H., Saeger, J., Depuydt, S. & Han, T. (2018). Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotoxicology and Environmental Safety, 149, 225 - 232. http://dx.doi.org/10.1016/j.ecoenv.2017.11.006. PMid:29182968. MacLaren, C., Storkey, J., Menegat, A., Metcalfe, H. & Dehnen-Schmutz, K. (2020). An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 40, 24. https://doi.org/10.1007/s13593-020-00631-6. Mahakham, W., Sarmah, A., Maensir, S. & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7(1), 8263. doi: 10.1038/s41598-017-08669-5.. https://doi.org/10.1038/s41598-017-08669-5. Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S. & Sarmah, A. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of the Total Environment, 573, 1089 - 1102. Doi: https://doi.org/10.1016/j.scitotenv.2016.08.120. Mallik, A. & Inderjit (2002). Problems and prospects in the study of plant allelochemicals: A brief introduction. In: A. U. Mallik & Inderjit (Eds.), Chemical ecology of plants: Allelopathy in aquatic and terrestrial ecosystems (pp. 1–5). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8109-8_1. Mirkin, B. & L. Naumova (2012). Current status of basic concepts in crop production. Ufa: AN RB, Guillem, 488. ISBN 978-5-7501-1350-7 (Ru). Mittal, D., Kaur, G., Singh, P., Yadav, K. & Ali, S. (2020). Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol., 2, 579954. doi: 10.3389/fnano.2020.579954. Mortensen, D., Bastiaans, L. & Sattin, M. (2000). The role of ecology in the development of weed management systems: an outlook. Weed Research, 40(1), 49 - 62. doi.org/10.1046/j.1365-3180.2000.00174.x. Nel, A., Xia, T., Madler, L. & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622 - 627. doi: 10.1126/science.1114397. Oerke, E. (2006). Crop losses to pests. Agricultural Science, 144(1), 31 - 43. doi:10.1017/S0021859605005708. Ofosu, R., Agyemang, E., Márton, A., Pásztor, G., Taller, J. & Kazinczi, G. (2023). Herbicide resistance: Managing weeds in a changing world. Agronomy, 13(6), 1595. https://doi.org/10.3390/agronomy13061595. Oliveri, G., Ferrante, M., Banni, M., Favara, C., Nicolosi, I., Cristaldi, A., Fiore, M. & Zuccarello P. (2020). Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, 187, 109677. https://doi.org/10.1016/j.envres.2020.109677. Parveen, A., Mazhari, B. & Rao, S. (2016). Impact of bio-Nano Gold on seed germination and seedling growth in Pennisetum glaucum. Enzyme and Microbial Technology, 95, 107 - 111. https://doi.org/10.1016/j.enzmictec.2016.04.005. Plohinskii, N. (1967). Algorithms of Biometry. Publishing House of the Moscow University, 74 - 78 (Ru). Pudlarz, A. & Szemraj, J. (2018). Nanoparticles as Carriers of Proteins, Peptides and Other Therapeutic Molecules. Open Life Sci., 31(13), 285 - 298. doi: 10.1515/biol-2018-0035. Rajput, V., Minkina, T., Mazarji, M., Shende, S., Sushkova, S., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Singh, A. & Jatav, H. (2020). Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Annals of Agricultural Sciences, 65(2), 137 - 143. doi: 10.1016/j.aoas.2020.08.001. Sembada, A. & Lenggoro, I. (2024). Transport of Nanoparticles into Plants and Their Detection Methods. Nanomaterials, 14(2), 131. https://doi.org/10.3390/nano14020131. Shahriari, M., Savaghebi-Firoozabadi, G., Azizi, M., Kalantari, F. & Minai-Tehrani, D. (2007). Study of growth and germination of Medicago sativa (Alfalfa) in light crude oil-contaminated soil. Research Journal of Agriculture and Biological Sciences, 3(1), 46 - 51. Siddiqi, K. & Husen, A. (2016). Engineered gold nanoparticles and plant adaptation potential. Nanoscale Research Letters, 11, 400. https://doi.org/10.1186/s11671-016-1607-2. Singh, A., Rajeswari, G., Nirmal, L. & Jacob, S. (2021). Synthesis and extraction routes of allelochemicals from plants and microbes: A review. Reviews in Analytical Chemistry, 40, 293 – 311. https://doi.org/10.1515/revac-2021-0139. Singh, V., Segbefia, W., Fuller, M., Shankle, M., Morris, C., Meyers, S. & Tseng, T. (2022). Allelopathy: an ecofriendly approach to control palmer amaranth using allelopathic sweetpotato. Frontiers in Agronomy, 4, 930378. doi: 10.3389/fagro.2022.930378. Song, K., Zhao, D., Sun, H., Gao, J., Li, S., Hu, T. & He, X. (2022). Green nanopriming: responses of alfalfa (Medicago sativa L.) seedlings to alfalfa extracts capped and light-induced silver nanoparticles. BMC Plant Biology, 22, 323. https://doi.org/10.1186/s12870-022-03692-9. Souzaa, M., Souzaa, A., Rodriguesa, A., Batistab, P., Castroa, S., Silvaa, I., Jakelaitisc, A., Costab, A. & Salesa, J. (2024). The allelopathic effects of aqueous Talinum triangulare (jacq.) willd extracts on the development of Lactuca sativa L. seedlings. Brazilian Journal of Biology, 84, e279983. https://doi.org/10.1590/1519-6984.279983. Sundra, M. & Pote, K. (1978). The allelopathic potentials of root exudates from different ages of Celosia argenta Linn. Natural Academic Science Journal, 1(2), 56 - 58. Swanton, C., Weaver, S., Cowan, P., Acker, R., Deen, W. & Shreshta, A. (1999). Weed Thresholds: Theory and Applicability. Journal of Crop Production, 2(1), 9 - 29. https://doi.org/10.1300/9785529. Tabaglio, V., Gavazzi, C., Schulz, M. & Marocco, A. (2008). Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agronomy for Sustainable Development, 28(3), 397 - 401. https://doi.org/10.1051/agro:2008004. Tarafdar, J., Xiong, Y., Wang, W., Quin, D. & Biswas, P. (2012). Standardization of size, shape and concentration of nanoparticle for plant application. Applied Biological Research, 14(2), 138 - 144. Taylor, A., Rylott, E., Anderson, C. & Bruce, N. (2014). Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE, 9(4), e93793. https://doi.org/10.1371/journal.pone.0093793. Thabet, S., Moursi, Y., Karam, M., Graner, A. & Alqudah, A. (2018). Genetic basis of drought tolerance during seed germination in barley. PLoS One, 13(11), e0206682. doi: 10.1371/journal.pone.0206682. Tiede, K., Hasselloev, M., Breitbarth, E., Chaudhry, Q. & Boxall, A. (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A, 1216(3), 503 - 509. doi: 10.1016/j.chroma. Vega-Vásquez, P., Mosier, N. & Irudayaraj, J. (2020). Nanoscale Drug Delivery Systems: From Medicine to Agriculture. Front. Bioeng. Biotechnol., 8, 79. doi: 10.3389/fbioe.2020.00079. Vieiraa, C., Marcona, C. & Drostea, A. (2024). Phytotoxic and cytogenotoxic assessment of glyphosate on Lactuca sativa L. Brazilian Journal of Biology, 84, e257039. https://doi.org/10.1590/1519-6984.257039 1/8. Wang, C., Liu, Z., Wang, Z., Pang, W., Zhang, L., Wen, Z., Zhao, Y., Sun, J., Wang, Z. & Yang, C. (2022a). Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Front Plant Sci., 13, 908426. doi: 10.3389/fpls.2022.908426. Wang, K., Wang, T., Ren, C., Dou, P., Miao, Z., Liu, X., Huang, D. & Wang. K. (2022b). Aqueous extracts of three herbs allelopathically inhibit lettuce germination but promote seedling growth at low concentrations. Plants (Basel), 11(4), 486. doi: 10.3390/plants11040486. Wang, X., Xie, H., Wang, P. & Yin, H. (2023). Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials (Basel), 16(8), 3097. doi: 10.3390/ma16083097. PMID: 37109933; PMCID: PMC10146108. Zhang, Q., Lin, L. & Ye, W. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13(1), 20. doi: 10.1186/s13020-018-0177-x. Zheng, L., Hong, F., Lu. S. & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104, 83 - 91. https://doi.org/10.1385/BTER:104:1:083. Zhu, Z., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O., Rotello, V., Xing, B. & Vachet, R. (2012). Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol., 46(22), 12391 - 12398. doi: 10.1021/es301977. Zucconi, F. (1981). Evaluating toxicity of immature compost. Biocycle, 22(2), 54 - 57. |
|
| Date published: 2025-08-27
Download full text