Enhancing phosphate avaibility and maize adaptibility to acidic stress condition, through the inoculation of native acid tolerant rhizosphosphate bacterial isolate
Debora D. M. Ambarita

, Muhammad Tazkiya, Betty Natalie Fitriatin, Tualar Simarmata
Abstract: The utilization of acidic land for the cultivation of maize is confronted by various limiting factors, including soil acidity and low fertility, mainly due to the fixation of phosphorus by aluminum ions. This research aims to assess the compatibility of selected isolates Phosphate-Solubilizing Rhizobacteria (PSR) from acidic soil, Kentrong Ultisol (KT-1, KT-2, and KT-3), and their capacity to enhance soluble phosphorus and maize plant growth. The experiment employed a randomized complete block factorial design with three replications. The first factor involved PSR isolates at eight levels, comprised individual isolates and their consortium combinations, while the second factor encompassed the acidity of the culture medium with three levels (pH 4.5, 5.5, and 6.5). Results demonstrated that isolates KT-1, KT-2, and KT-3 were compatible each other, and have the ability to form biofilm on plant roots. PSR consortium exhibited synergistic effects in improving root dry weight, PSR population, and soluble P, and there was an interaction between media acidity and bacterial isolates. The interaction of the KT-2 + KT-3 treatment at pH 4.5 significantly influenced and increased soluble P (895%) and PSR population (1693%), while the KT-3 treatment significantly increased root dry weight (98%). The interaction of the KT-2 + KT-3 treatment at pH 4.5 showed no significant difference, but had the potential to increase root length (35%), shoot dry weight (46%), and photosynthate accumulation (52%). The combination of using this inoculant has great potential as a biofertilizer in increasing acid soil fertility and maize growth.
Keywords: organic fertilizer; PGPR; posphate solubilizeng; sustainable farming; Zea mays
Citation: Ambarita, D. D. M., Tazkiya, M., Fitriatin, B. N. & Simarmata, T. (2025). Enhancing phosphate avaibility and maize adaptibility to acidic stress condition, through the inoculation of native acid tolerant rhizosphosphate bacterial isolate. Bulg. J. Agric. Sci., 31(4), 748–758.
References: (click to open/close) | Ahmed, W., Jing, H., Kaillou, L., Qaswar, M., Khan, M. N., Jin, C., Geng, S., Qinghai, H., Yiren, L., Guangrong, L. & Mei, S. (2019). Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China. PLoS ONE, 14(5), 1 - 17. https://doi.org/10.1371/journal.pone.0216881. Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y. & Dhiba, D. (2018). Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Frontiers in Microbiology, 9, 1606. https://doi.org/10.3389/fmicb.2018.01606. Bouray, M., Moir, J. L., Lehto, N. J., Condron, L. M., Touhami, D. & Hummel, C. (2021). Soil pH effects on phosphorus mobilization in the rhizosphere of Lupinus angustifolius. Plant Soil., 469(1–2), 387 - 407. doi: 10.1007/s11104-021-05177-4. Cerozi, B. da S. & Fitzsimmons, K. (2016). The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology, 219, 778 - 781. https://doi.org/10.1016/j.biortech.2016.08.079. Cho, J. C. & Tiedje, J. M. (2000). Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Applied and Environmental Microbiology, 66(12), 5448 - 5456. https://doi.org/10.1128/AEM.66.12.5448-5456.2000. Deng, Y. J. & Wang, S. Y. (2016). Synergistic growth in bacteria depends on substrate complexity. Journal of Microbiology, 54(1), 23 - 30. https://doi.org/10.1007/s12275-016-5461-9. Fitriatin, B. N., Fauziah, D. A., Hindersah, R. & Simarmata, T. (2022). The Influence of Different Acidic Conditions on the Plant Growth-Promoting Rhizobacteria Activity of Phosphate Solubilizing Bacteria. KnE Life Sciences, 5, 72 - 78. https://doi.org/10.18502/kls.v7i3.11108. Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A. & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563 - 575. https://doi.org/10.1038/nrmicro.2016.94. Gaume, A., Mächler, F., Le, C. De, Narro, L. & Frossard, E. (2001). Low-P tolerance by maize (Zea mays L.) genotypes : Significance of root growth , and organic acids and acid phosphatase root exudation, 253 - 264. Glaser, B. & Lehr, V. I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, 9(1), 1 - 9. https://doi.org/10.1038/s41598-019-45693-z. Gomez, K. A., & Gomez, A. A. (1995). Statistical Procedures for Agricultural Research (2nd ed.). New York, NY: John Wiley & Sons, Inc. Havlin, J. L., Beaton, J. D., Tisdale, S. L. & Nelson, W. L. (2005) Soil Fertility and Fertilizers: An Introduction to Nutrient Management. 7th Edition, Pearson Educational, Inc., Upper Saddle River, New Jersey. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. (2010). Bacterial competition: Surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1), 15 - 25. https://doi.org/10.1038/nrmicro2259. Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy. https://doi.org/10.1155/2019/4917256. Kaur, C., Selvakumar, G. & Ganeshamurthy, A. N. (2019). Phyto and rhizo remediation. Springer; Singapore: 2019. Acid tolerant microbial inoculants: a requisite for successful crop production in acidic soils, 235 - 247. Dworkin, J. & Harwood, C. (2022). Metabolic Reprogramming and Longevity in Quiescence. Annual review of microbiology. https://doi.org/10.1146/annurev-micro-041320-111014. Lefever, K., Laubscher, C. P., Ndakidemi, P. A. & Nchu, F. (2017). Effects of pH and Phosphorus Concentrations on the Chlorophyll Responses of Salvia chamelaeagnea (Lamiaceae) Grown in Hydroponics. In: Chlorophyll, 79 - 92. Santa Maria: Intech Open. Li, C., Li, Y., Yang, J., Lian, B., Wang, J. & Zou, G. (2024). Regulating root structure of potted lettuce to magnify absorption from APP and UAN fertilizers. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1407984. Liu, D. (2021). Root Developmental Responses to Phosphorus Nutrition.. Journal of integrative plant biology. https://doi.org/10.1111/jipb.13090. Lund, P. A., De Biase, D., Liran, O., Scheler, O., Mira, N. P., Cetecioglu, Z., Noriega Fernández, E., Bover-Cid, S., Hall, R., Sauer, M. & O’Byrne, C. (2020). Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Frontiers in Microbiology, 11, 556140. https://doi.org/10.3389/fmicb.2020.556140. Martí, M., Frígols, B. & Serrano-Aroca, A. (2018). Antimicrobial characterization of advanced materials for bioengineering applications. Journal of Visualized Experiments, (138), 1 - 10. https://doi.org/10.3791/57710. McNear, D. H. (2013). The rhizosphere - roots, soil and everything in between. Nature Education Knowledge, 4(3), 1 - 15. Ochoa-Loza, F. J., Artiola, J. F. & Maier, R. M. (2001). The biosurfactant developed by Pseudomonas aeruginosa is an effective metal complexing agent such as Pb2 ad, Cd2 ad and Zn2 adjacentt. Journal of Environmental Quality, 30, 479 - 485. Penn, C. J., & Camberato, J. J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120. https://doi.org/10.3390/agriculture9060120 Puri, A., Padda, K. P. & Chanway, C. P. (2020). In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Applied Soil Ecology, 149, 103538. https://doi.org/10.1016/j.apsoil.2020.103538. Qin, J., Wang, H., Cao, H., Chen, K. & Wang, X. (2020). Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean. Mycorrhiza, 30, 285 - 298. https://doi.org/10.1007/s00572-020-00955-x. Rahman, R., Anshar, M. & Bahrudin. (2015). Application of Phosphate-Solubilizing Bacteria, Nitrogen-Fixing Bacteria, and Mycorrhizae on the Growth of Chili Pepper Plants (Capsicum anuum L.). e-J Agrotekbis, 3(3), 316 - 328. Rajwar, J., Chandra, R., Suyal, D. C., Tomer, S., Kumar, S. & Goel, R. (2018). Comparative phosphate solubilizing efficiency of psychrotolerant Pseudomonas jesenii MP1 and Acinetobacter sp. ST02 against chickpea for sustainable hill agriculture. Biologia, 73(8), 793 - 802. https://doi.org/10.2478/s11756-018-0089-3. Reygaert, C. W. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482 - 501. https://doi.org/10.3934/microbiol.2018.3.482. Roell, G. W., Zha, J., Carr, R. R., Koffas, M. A., Fong, S. S. & Tang, Y. J. (2019). Engineering microbial consortia by division of labor. Microbial Cell Factories, 18(1), 1 - 11. https://doi.org/10.1186/s12934-019-1083-3. Rudrappa, T., Biedrzycki, M. L. & Bais, H. P. (2008). Causes and consequences of plant-associated biofilms. FEMS Microbiology Ecology, 64(2), 153 - 166. https://doi.org/10.1111/j.1574-6941.2008.00465.x. Suharyono, Rizal, S., Nurainy, F. & Kurniadi, M. (2012). Growth of Lactobacillus casei over Different Fermentation Durations in a Synbiotic Beverage Made from Green Cincau (Premna oblongifolia Merr.) Extract. Jurnal Teknologi Hasil Pertanian, 5(2), 117 - 128. Suwa, R., Hakata, H., Hara, H., El-Shemy, H. A., Adu-Gyamfi, J. J., Nguyen, N. T., Kanai, S., Lightfoot, D. A., Mohapatra, P. K. & Fujita, K. (2010). Plant Physiology and Biochemistry High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 48(2-3), 124 - 130. https://doi.org/10.1016/j.plaphy.2009.12.010. Tan, D. X., Hardeland, R., Manchester, L. C., Korkmaz, A., Ma, S., Rosales-Corral, S. & Reiter, R. J. (2012). Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. Journal of Experimental Botany, 63(2), 577 - 597. https://doi.org/10.1093/jxb/err256. Tian, J., Ge, F., Zhang, D., Deng, S. & Liu, X. (2021). Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology, 10(2), 1 - 19. https://doi.org/10.3390/biology10020158. Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y. & Nomura, N. (2016). Environmental factors that shape biofilm formation. Bioscience, Biotechnology and Biochemistry, 80(1), 7 - 12. https://doi.org/10.1080/09168451.2015.1058701. Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A. & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5–6), 460 - 468. https://doi.org/10.1007/s003740050024. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules, 21(5), 1 - 17. https://doi.org/10.3390/molecules21050573. Wahid, F., Fahad, S., Danish, S., Adnan, M., Yue, Z., Saud, S., Siddiqui, M. H., Brtnicky, M., Hammerschmiedt, T. & Datta, R. (2020). Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture (Switzerland), 10(8), 1 - 14. https://doi.org/10.3390/agriculture10080334. Wakwoya, M. B., Woldeyohannis, W. H. & Yimamu, F. K. (2022). Effects of minimum tillage and liming on maize (Zea mays L.) yield components and selected properties of acid soils in Assosa Zone, West Ethiopia. Journal of Agriculture and Food Research, 8, 100301. https://doi.org/10.1016/j.jafr.2022.100301 Wang, Z., Zhang, H., Liu, L., Li, S., Xie, J., Xue, X. & Jiang, Y. (2022). Screening of phosphate solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol., 22(1), 296. doi: 10.1186/s12866-022-02715-7. Wellmann, K., Varnskühler, J., Leubner-Metzger, G. & Mummenhoff, K. (2023). Maize Grain Germination Is Accompanied by Acidification of the Environment. Agronomy, 13(7), 1819. Wen, Z., Li, H., Shen, J. & Rengel, Z. (2017). Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 416, 377 - 389. https://doi.org/10.1007/s11104-017-3214-0. Wintermute, E. H. & Silver, P. A. (2010). Emergent cooperation in microbial metabolism. Molecular Systems Biology, 6(407), 1 - 7. https://doi.org/10.1038/msb.2010.66. Yu, H., Wu, X., Zhang, G., Zhou, F., Harvey, P. R. & Wang, L. (2022). Identification of the phosphorus solubilizing bacteria strain JP233 and its effects on soil phosphorus leaching loss and crop growth. Front. Microbiol., 13. doi: 10.3389/fmicb.2022.892533. Zuroff, T. R. & Curtis, W. R. (2012). Developing symbiotic consortia for lignocellulosic biofuel production. Applied Microbiology and Biotechnology, 93(4), 1423 - 1435. https://doi.org/10.1007/s00253-011-3762-9. Zhang, W., Liu, D. Y., Li, C., Chen, X. P. & Zou, C. Q. (2017). Accumulation, partitioning, and bioavailability of micronutrients in summer maize as affected by phosphorus supply. European Journal of Agronomy, 86, 48 - 59. Zhang, M., Hu, Y., Han, W., Chen, J., Lai, J. & Wang, Y. (2023). Potassium nutrition of maize: uptake, transport, utilization, and role in stress tolerance. The Crop Journal. https://doi.org/10.1016/j.cj.2023.02.009. Zhao, W., Gu, C., Zhu, M., Yan, Y., Liu, Z., Feng, X. & Wang, X. (2023). Chemical speciation of phosphorus in farmland soils and soil aggregates around mining areas. Geoderma. https://doi.org/10.1016/j.geoderma.2023.116465. |
|
| Date published: 2025-08-27
Download full text