Systems for control of the weeds in indeterminate tomatoes (Solanum lycopersicum L.)
Nikolina Shopova

, Mariyan Yanev

Abstract: Tomatoes are a major vegetable crop of significant economic value. The effective weed control has a key role in the growth, development, and productivity of tomato plants. This study aims to investigate a weed control system for tomatoes through the use of herbicides. In 2020-2021, on the experimental field of Agricultural University – Plovdiv, Bulgaria, a field experiment with the tomato variety Opal F1, was performed. The experiment was performed by randomized block design in four replicates. The experience variants include: 1. Untreated control - without the use of herbicides and without hoeing; 2. Economic control - timely removal of weeds by hoeing, without the application of herbicides; 3. Dual Gold 960 EC (960 g/l s-metolachlor) + Targa Super 5 EC (50 g/l quizalofop-p-ethyl) in rates of 1.20 l ha-1 + 1.75 l ha-1; 4. Dual Gold 960 EC + Sencor 70 WG (700 g/kg metribuzin) in rates of 1.20 l ha-1 + 0.60 g ha-1 ; 5. Stomp New 330 EC (330 g/l pendimethalin) + Targa Super 5 EC in rates of 4.00 l ha-1 + 1.75 l ha-1 ; 6. Stomp New 330 EC + Sencor 70 WG in rates of 4.00 l ha-1 + 0.60 g ha-1. The dominant weeds in the field were Portulaca oleracea L. and Amaranthus retroflexus L. Apart from them, there were also Solanum nigrum L., Sonchus oleraceus L., Sorghum halepense (L.) Pers. developed from rhyzomes, etc. Under experimental conditions, application of the Stomp New 330 EC (4.00 l ha-1) + Sencor 70 WG (0.60 g ha-1) system showed the highest efficacy against Portulaca oleracea L. - 87.5%, Amaranthus retroflexus L. - 80.0%, Solanum nigrum L. - 75.0%, and Sonchus oleraceus L. - 80.0%. High efficacy against these weeds was also reported at the Dual Gold 960 EC (1.20 l ha-1) + Sencor 70 WG (0.60 g ha-1). Аt the variant with Dual Gold 960 EC (1.20 l ha-1) + Targa Super 5 EC (1.75 l ha-1) and Stomp New 330 EC (4.00 l ha-1) + Targa Super 5 EC (1.75 l ha-1) was reported оne hundred percent efficacy against Setaria viridis (L.) P.Beauv. Highest herbicidal efficacy against Sorghum halepense (L.) Pers. developed from rhizomes - 98.8% was reported after treatment with Stomp New 330 EC + Targa Super 5 EC. In the conditions of experience, the highest yield of tomatoes, Opal F1, was received at Economic control - 6702.5 kg da-1, followed by Stomp New 330 EC + Sencor 70 WG - 6530.3 kg da-1, and Dual Gold 960 EC + Sencor 70 WG - 6262.5 kg da-1. There is no statistically proven difference in yield between Economic control, Stomp New 330 EC + Sencor 70 WG, and Dual Gold 960 EC + Sencor 70 WG.
Keywords: efficacy; herbicides; tomatoеs; weeds; yield
Citation: Shopova, N. & Yanev, M. (2025). Systems for control of the weeds in indeterminate tomatoes (Solanum lycopersicum L.). Bulg. J. Agric. Sci.,31(4), 718–730.
References: (click to open/close) | Abdel-Gadir, H., Dawoud, D., Abdel-Aziz, E., Hamada, A. & Babiker, A. (2009). Effects of Dual gold 96% EC (s-metolachlor) alone or in mixture with atrazine on preemergence weed control in sorghum. Sudan J. Agric. Res., 14, 81 - 94. Adalid, A., Roselló, S. & Nuez, F. (2004). Breeding tomatoes for their high nutritional value. Rec. Res. Dev. Plant Sci., 2, 33 - 52. Adigun, J. (2002). Chemical weed control in transplanted rainfed tomato (Lycopersicon esculentum Mill) in the forest-savanna: transition zone of south western nigeria. Agric. Environ., 2, 141 - 150. Aganze, V., Cokola Cuma, M., Salimbasi, J. & Monty, A. (2020). Weed diversity in tomato crops in the mountainous region of South Kivu, DR Congo. Biotechnol. Agron. Soc. Environ., 24(4), 240 - 247. Agarwal, A., Prakash, O., Sahay, D. & Bala, M. (2022). Effect of organic and inorganic mulching on weed density and productivity of tomato (Solanum lycopersicum L.). Journal of Agriculture and Food Research, 7, 100274. Ahmed, S. A. & Kandeel, N. M. (1991). Response of garlic to Goal, Ronstar and Stomp applied for annual weed control. Assiut J. of Agric. Sci., 22(5), 197 - 208. Akhtar, K. P., Sarwar, N., Saleem, M. Y. & Asghar, M. (2011). Convolvulus arvensis, a new host for Alternaria solani causing early blight of Solanum lycopersicum in Pakistan. Australasian Plant Dis. Notes., 6(1), 84 - 86. Amare, T., Sileshi, F. & Hamza, I. (2015). The effect of weed interference period on yield of transplanted tomatoes (Lycopersicon esculentum M.) in Guder West Shewa-Oromia, Ethiopia. J. Food and Agric. Sci., 5(3), 14 - 20. Anyszka, Z., Golian, J. & Łykowski, W. (2011). Biological efficacy evaluation of pendimethalin CS (Stomp Aqua 455 CS) in drilled onion. Prog. in Plant Protect., 51(3), 1335 - 1339. Anzalone, A., Cirujeda, A., Aibar, J., Pardo, G. & Zaragoza, C. (2010). Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol., 24(3), 369 - 377. Awan, D. A., Ahmad, F. & Ashraf, S. (2018). Effective weed control strategy in tomato kitchen gardens--herbicides, mulching or manual weeding. Curr. Sci. India, 114(6), 1325 - 1329. DOI:10.18520/cs/v114/i06/1325-1329. Bakht, T. & Khan, A. I. J. (2014). Weed control in tomatoes (Lycopersicon esculentum Mill) though mulching and herbicide. Pak. J. Bot., 46(1), 289 - 292. Borguini, R. G. & Da Silva Torres, E. A. F. (2009). Tomatoes and tomato products as dietary sources of antioxidant. Food Rev. Int., 25, 313 - 325. https://doi.org/10.1080/87559120903155859. Campiglia, E., Radicetti, E. & Mancinelli, R. (2015). Cover crops and mulches influence weed management and weed flora composition in strip‐tilled tomato (Solanum lycopersicum). Weed Res., 55(4), 416 - 425. https://doi.org/10.1111/wre.12156. Chipomho, J., Mtali-Chafadza, L., Masuka, B. P., Murwir, M., Chabata, I., Chipomho, C. & Msindo, B. (2018). Organic soil amendments: implications on fresh tomato (Solanum lycopesicum) yield, weed density and biomass. The J. of Anim. Plant Sci., 28(3), 845 - 853. Danailov, Zh. (2012). Tomato breeding and seed production (Solamun lycopersicum L.) History, Methods, Achievements, Trends. Prof. Marin Drinov Academic Publishing House, 184 - 185 (Bg). D'Antoni, M. J., Vento, B., Moreno, G., & Porra, C. (2012). Determination of the critical period of weed interference in tomato (Lycopersicon esculentum), San Juan, Argentina. Revista de la Facultad de Agronomía (La Plata), 111(1), 23 - 30. Dayton, D. M., Chaudhari, S., Jennings, K. M., Monks, D. W. & Hoyt, G. W. (2017). Effect of drip-applied metam-sodium and s-metolachlor on yellow nutsedge and common purslane in polyethylene-mulched bell pepper and tomato. Weed Technol., 31(3), 421 - 429. https://doi.org/10.1017/wet.2017.16. Dobrzański, A., Anyszka, Z. & Palczyński, J. (1989). Oxyfluorfen (Goal 2E) for weed control in vegetable crops grown from transplants. Biul. Warzywniczy., 2, 139 - 143. Gaynor, J. D., Hamill, A. S. & MacTavish, D. C. (1993). Efficacy, fruit residues, and soil dissipation of the herbicide metolachlor in processing tomato. J. Amer. Soc. Hort. Sci., 118(1), 68 - 72. Govindra, S., Bhan, V. & Tripathi, S. (1986). Effect of herbicide alone and combination with weeding on tomato and association with weeds. Indian J. Weed Sci., 16, 262 - 266. Hălmăgean, L., Beldea, V. & Sipa, V. (1993). Experimental results on weed control in vegetable crops. B. U. Agr. Med. Vet. Hort., 47(1), 175 - 190. Holm, L. (1956). Some quantitative aspects of weed competition in vegetable crops. Weeds, 4, 111 - 123. Hu, B., Brandenberger, L., Beartrack, M., Carrier, L. & Goad, C. (2023). Field performance of paper and plastic mulches for fresh market tomato production. International Journal of Vegetable Science, 29(4), 294 - 302. Kalinova, Sht., Zhalnov, I. & Dochev, G. (2012). Overview of indirect weed harm as hosts of diseases and pests on crop plants. Sci. Works of the Agricultural University of Plovdiv, Bulgaria, LVI, 291 - 294. Khan, M. & Hassan, W. (2003). Effect of s-metolachlor (Dual Gold 960 EC) on weed control and yields in different crops. Sarhad J. Agric., 19(3), 333 - 339. Kumar, V., Nanjappa, H. & Ramachandrappa, B. (2003). Effect of soil solarization for a period of one month during March, April and May on weed control and yield of tomato (Lycopersicon esculentum Mill.). Crop Res., 25(2), 259 - 265. Luthria, D., Mukhopadhyay, D. & Krizek, D. (2006). Content of total phenolic and phenolic acids in tomato fruits as influenced by cultivar and solar UV radiation. J. Food Compost. Anal., 19, 771 - 777. https://doi.org/10.1016/j.jfca.2006.04.005. Marana, J., Gongola, R., Paredes, E. & Labrada, R. (1983). Critical period for competition from weeds and direct-sown tomato. Cienc. Tecn Agric., Hort., 2, 73 - 83. Mauromicale, G., Monaco, A. L., Longo, A. M. & Restuccia, A. (2005). Soil solarization, a nonchemical method to control branched broomrape (Orobanche ramosa) and improve the yield of greenhouse tomato. Weed sci., 53(6), 877 - 883. McGiffen, M. E. & Masiunas, J. B. (1991). Postemergence control of broadleaf weeds in tomato (Lycopersicon esculentum). Weed Technol., 5(4), 739 - 745. Meza, J., Pantoja, A., Galan, P. R., Godoy, N., Gattini, J., Villasanti, C. & Díaz, J. (2013). Tomato cultivation with good agricultural practices in urban and suburban agriculture. FAO, 9 (Sp). Mohseni-Moghadam, M. & Doohan, D. (2017). Fomesafen crop tolerance and weed control in processing tomato. Weed Technol., 31(3), 441 - 446. Moreno, M., Moreno, A. & Mancebo, I. (2011). Comparison of different mulch materials in a tomato (Solanum lycopersicum L.) crop. Span. J. Agric. Res., 7, 454 - 464. DOI:10.5424/sjar/2009072-1500. MZH (2023). Agrostatistics, Vegetable production in Bulgaria - harvest ’2022. Ministry of Agriculture (Bg). https://www.mzh.government.bg/media/filer_public/2023/04/11/ra423_publicationvegetables2022.pdf. Nath, B. & Sharma, N. (2000). Weed control in tomato. Vegetable Sci., 27(2), 197 - 198. Nour, V., Trandafir, I. & Ionica, M. E. (2013). Antioxidant compounds, mineral content and antioxidant activity of several tomato cultivars grown in southwestern Romania. Not. Bot. Hort. Agrobot., 41, 136 - 142. https://doi.org/10.15835/nbha4119026. Nurse, R. E., Robinson, D. E., Hamill, A. S. & Sikkema, P. H. (2006). Annual broadleaved weed control in transplanted tomato with clomazone in Canada. Crop Prot., 25(8), 795 - 799. DOI:10.1016/j.cropro.2005.10.014. Penkov, L. A., Mudrova, T. A. & Gubkin, V. N. (2000). Chemical weeding in tomato crops. Kartofel'i Ovoshchi, 2, 46 (Ru). Qasem, J. R. (2019). Weed control in tomato (Solanum lycopersicum Mill.) by new biodegradable polypropylene sheets and other soil mulching materials. Pak. J. Agri. Sci., 56(4), 857 - 866. DOI:10.21162/PAKJAS/19.7451. Reddy, M. S., Rao, P. G. & Babu, R. S. H. (1999). Integrated weed management studies in tomato (Lycopersicon esculentum Mill). J. of Res. ANGRAU., 27(4), 7 - 11. Robinson, D. E., Sikkema, P. H. & Hamill, A. S. (2004). Weed control and cultivar tolerance in tomato to thifensulfuron-methyl. Acta Hortic., 724, 129 - 135. Robinson, D. E., Soltani, N., Hamill, A. S. & Sikkema, P. H. (2006). Weed control in processing tomato (Lycopersicon esculentum) with rimsulfuron and thifensulfuron applied alone or with chlorothalonil or copper pesticides. Hort. Sci., 41(5), 1295 - 1297. https://doi.org/10.21273/HORTSCI.41.5.1295. Sandhu, K. S., Daljit, S., Jaswinder, S. & Saimbhi, M. S. (1993). Investigations on integrated and economical weed management in tomato at Ludhiana, India. Proceedings of an Indian Society of Weed Science International Symposium, III, 211 - 212. Singh, P. P. & Twpathi, S. S. (1988). Effect of herbicides and time of weeding on weed control and fruit yield of tomato. Indian J. Weed Sci., 20(4), 39 - 43. Sinha, B. N., Mehta, B. S. & Neelam, S. (2000). Influence of weed control on tomato yield, quality and economics. Haryana J. of Hort. Sci., 29(3/4), 249 - 251. Siviero, P. & Marasi, V. (2002). Trial of pre-transplant weed control of tomato for industrial. Informatore Agrario., 58(13), 57 - 58. Trojak-Goluch, A. & Solarska, E. (2010). Biological efficacy of stomp 330 EC in tobacco weed control. Prog. in Plant Protect., 50(1), 326 - 331. Ulises, A. E. P. (1994). Weed control in industrial tomato (Lycopersicon esculentum Mill.) with herbicides applied before and after transplanting. Thesis, Santiago (Chile), University of Chile, 83. Vasilakoglou, I., Dhima, K., Paschalidis, K., Gatsis, T., Zacharis, K. & Galanis, M. (2013). Field bindweed (Convolvulus arvensis L.) and redroot pigweed (Amaranthus retroflexus L.) control in potato by pre-or post-emergence applied flumioxazin and sulfosulfuron. Chilean J. Agric. Res., 73(1), 24 - 30. DOI:10.4067/S0718-58392013000100004. Yu, J., Boyd, N. S., Schumann, A. W. & Sharpe, S. M. (2021). Tomato tolerance to preemergence herbicides in plasticulture using narrow bands and precision technology. Crop Prot., 146, 105680. |
|
| Date published: 2025-08-27
Download full text