Determination of irrigation rate for peanuts (Aracis hypogaea L.) related to climate changes
Stanislav Stamatov

, Ivko Stamatov

, Mariya Petrova

Abstract: A study was conducted to determine the influence of the change in the irrigation rate on the yield of peanuts for the conditions of Haskovo, Bulgaria. It was established that the mass of fruits and seeds in a plant increases with an increase in the irrigation rate from 280 L/m2 to 420 L/m2. For fruits, this increase is 20% for every 70 L/m2, and for seeds 15% to 21%. The increase in seed yield is insignificant and is within 0.6%. The main influence on the change in the amount of yield, formed by the mass of fruits and seeds in a plant, is the irrigation rate and, to a lesser extent, the conditions of the year expressed by the following day's temperature and precipitation during the vegetation of the crop. The yield of seeds is strongly influenced by the annual conditions and less by the combination of the factors year and irrigation rate. The growth of the masses of fruits and seeds of a plant with increasing irrigation rate, has an exponential character at a sufficiently high value of the determinant.
Keywords: climate change; irrigation rate; peanuts; regression models; yield
Citation: Stamatov, S., Stamatov, I. & Petrova, M. (2025). Determination of irrigation rate for peanuts (Aracis hypogaea L.) related to climate changes. Bulg. J. Agric. Sci., 31(4), 697–701.
References: (click to open/close) | Azevedo, B., Sousa, G., Paiva, T., Mesquita, J. & Viana, T. (2014). Irrigation management in peanut crops. Magistra, 26(1), 11 - 18. (port.) Carter, E., Melkonian, J., Riha, S. & Shaw, S. (2016). Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environmental Research Letters, 11(9), 1 - 11. Chaves, M., Maroco, J. & Pereira, J. (2003). Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biology, 30(3), 239 - 264. Costa, M., Ortuño, M. & Chaves, M. (2007). Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology, 49(10),1421 - 1434. Duarte, E., Melo Filho, P. & Santos, R. (2013). Agronomic characteristics and harvest index of different peanut genotypes subjected to water stress.Revista Brasileira de Engenharia Agrícola e Ambiental, 17(8), 843 - 847. (port.) Eck, M., Murray, A., Ward, A. & Konrad, C. (2020). Influence of growing season temperature and precipitation anomalies on crop yield in the southeastern United States. Agricultural and Forest Meteorology, 291(2), 1 - 34. Flexas, J., Bota, J., Galmés, J., Medrano, H. & Ribas-Carbó, M. (2006). Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress Physiologia Plantarum, 127(3), 343 - 352. Geerts, S. & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, Elsevier, 96(9), 1275 - 1284. Hansen, Z., Libecap, G. & Lowe, S. (2011). Climate variability and water infrastructure: historical experience in the Western United States. In: The Economics of Climate Change: Adaptations Past and Present. National Bureau of Economic Research, 253 - 280. Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G. & Wang, J. (2018). A review of data assimilation of remote sensing and crop models. European Journal of Agronomy, 92, 141 - 152. Kambiranda, D., Vasanthaiah, H.. Ramesh, K., Ananga, A., Basha, S. & Naik, K. (2011). Impact of drought stress on peanut (Arachis hypogaea L.) productivity and food safety. Plants and Environment, 249 - 272. Kheira, A. A. A. (2009). Macromanagement of deficit-irrigated peanut with sprinkler irrigation. Agricultural Water Management, 96(10), 1409 - 1420. Lobell, D., Schlenker, W. & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616 - 620. Mahan, J., Burke, J., Wanjura, D. & Upchurch, D. (2005). Determination of temperature and time thresholds for BIOTIC irrigation of peanut on the southern high plains of Texas. Irrigation Science, 23(4), 145 - 152. Qin, H., Feng, S., Chen, C., Guo, Y., Knapp, S., Culbreath, A., He, G., Wang, M. L., Zhang, X., Holbrook, C. C., Ozias-Akins, P. & Guo, B. (2012). An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theoretical and Applied Genetics, 124(4), 653 - 664. Rao, R. C. N., Singh, S., Sivakumar, M. V. K., Srivastava, K. L. & Williams, J. H. (1985). Effect of water deficit at different growth phases of peanut. I. Yield responses. Agronomy Journal, 77(5), 782 - 786. Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Muller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A., Schmid, E., Stehfest, E., Yang, H. & Jones, J. W. (2013). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the USA., 111(9), 3268 - 3273. Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Elliott, J., Folberth, C., Khabarov, N., Müller, C., Pugh, T., Rolinski, S., Schaphoff, S., Schmid, E., Wang, X., Schlenger, W. & Frieler, K. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 8(1),13931,1 - 9. Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P. & Portmann, F. T. (2010). Groundwater use for irrigation – a global inventory. Hydrology and Earth System Sciences, 14(10), 1863 - 1880. Siebert, S., Webber, H., Zhao, G. & Ewert. F. (2017). Heat stress is overestimated in climate impact studies for irrigated agriculture. Environmental Research Letters, 12(5), 054023, 1 - 8. Stansell, J. R. & Pallas, J. E. (1985). Yield and quality response of Florunner peanut to applied drought at several growth stages. Peanut Science, 12(2), 64 - 70. Stewart, W. L., Fulton, A. E., Krueger, W. H., Lampinen, B. D. & Shackel, K. A. (2011). https://www.sciencedirect.com/science/article/pii/S0378377412001710 - bbib0165. Regulated deficit irrigation reduces water use of almonds without affecting yield. California Agriculture, 65(2), 90 - 95. Vara Prasad, P., Boote, K., Hartwell Allen, Jr, L. & Thomas, J. (2003). Super - optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology, 9(12), 1775 - 1787. Wright, G. C., Hubick, K. T. & Farquhar, G. D. (1991). Physiological analysis of peanut cultivar response to timing and duration of drought stress. Australian Journal of Agricultural Research, 42(3), 453 - 470. Zhao, J., Chu, Q., Shang, M., Meki, M. N., Norelli, N., Jiang, Y., Yang, Y., Zang, H., Zeng, Z. & Jeong, J. (2019). Agricultural policy environmental eXtender (APEX) simulation of spring peanut management in the North China Plain. Agronomy, 9(8), 443, 1 - 21. Zhen, X., Zhang, Q., Sanz-Saez, A.,. Chen, C. Y., Dang, P. M. & Batchelor, W. D. (2022). Simulating drought tolerance of peanut varieties by maintaining photosynthesis under water deficit. Field Crops Research, 287, 1 - 39. |
|
| Date published: 2025-08-27
Download full text