Phenotypic stability of new cotton lines (Gossypium hirsutum L.)
Valentina Dimitrova

, Minka Koleva

Abstract: The genotype × environment interaction and stability of 24 advanced cotton lines and the standard cultivar Chirpan-539 were studied during 2019-2021. The years of study appeared to be different ecological environments. To evaluate the stability, different stability methods were used: the stability variances (2i, S2i) of Shukla (1972), the ecovalence (W2i) of Wricke (1962) and the parameter YSi of Kang (1993). The regression coefficient (bi) and the deviation from regression (S2di) (Eberhart & Russel, 1966) were calculated only for seed cotton yield. A cluster analysis was applied to group the genotypes by phenotypic stability for the studied traits. It was found that the tested cotton genotypes significantly interacted with the environmental (years) conditions in terms of seed cotton yield, boll weigt, fiber length and lint persentage, which required their stability to be studied. Given the estimates of the parameter YSi and the overall performance based on the variantces 2i and S2i, and the ecovalence W2i, the most valuable lines for the selection programs with cotton were: for seed cotton yield - 678 and 654, combining yield and stability expressed by regression and variance methods, 705 and 724, with high YSi scores due to high yields, 692, responsive to favorable environments; for boll weight - 701, 581 and 678; for lint percentage - 661, 663 and 718 and for fiber length – 724, 721 and 583, showed high average level and high stability for the relevant traits. Complex breeding value, high average level and stability, for two traits simultaneously was found in lines: 678 - for seed cotton yield and boll weight; 701 - for boll weight and lint percentage; 581 - for boll weight and fiber length. Cluster analysis very well groups genotypes by phenotypic stability and contributes to their more efficient use in breeding programs. The lines distinguished as most valuable based on the analysis of research results, formed independent smaller groups.
Keywords: cotton; economic traits; G. hirsutum L.; genotype-environment interaction; new lines; phenotypic stability
Citation: Dimitrova, V. & Koleva, M. (2025). Phenotypic stability of new cotton lines (Gossypium hirsutum L.). Bulg. J. Agric. Sci., 31(3), 531–544.
References: (click to open/close) | Abro, S., Rajput, M. T., Sial, M. A., Deho, Z. A. & Rizwan, M. (2020). Stability analysis for seed cotton yield of newly developed upland cotton genotypes. Pak. J. Agri., Agril. Engg., Vet. Sci. 36(2), 97 – 100. Alexandrov, V., Simeonov, P., Kazandzhiev, V., Korchev, G. & Yotova, A. (2010). Climate change. NIMH BAS. Balakrishna, B., Reddy, C. V. & Ahamed, L. M. (2016). Stability analysis for seed cotton yield & its component traits in inter- specific hybrids of cotton (G. hirsutum x G. barbadense). Green Farming, 7(5), 1013 - 1018. Becker, H. C. & Leon, J. (1988). Stability analysis in plant breeding. Plant Breeding, 101, 1 - 23. Bertan, I. & Costa de Oliveira, A. (2007). Parental Selection Strategies in Plant Breeding Programs. J. Crop Sci. Biotech. 10(4), 211 – 222. Chinchane, V. N., Deosarkar, D. B. & Kalpande, H. V. (2018). Stability analysis for seed sotton yield and its component traits in hybrids of desi cotton (Gossypium arboreum L.). Int. J. Curr. Microbiol. App. Sci., 7(9), 1000 - 1012. Dechev, D. & Valkova, N. (2007). Phenotype stability evaluation of mutant cotton genotypes by some traits. International Science Conference, Stara Zagora, June 7-8, 2007. Vol. I Plant Studies, 353 – 356. Deho, Z. A., Abro, S. & Rizwan, M. (2021). Assessment of stability for seed cotton yield of cotton genotypes across different environmental conditions of Sindh Province. Pakistan Journal of Agricultural Research, 34(1), 108 - 112. Dechev, D. & Bozhanova, V. (2009). Grouping of durum wheat genotypes by important agronomic traits under different water regimes. Field Crops Studies, 5(1), 33 - 37 Dewdar, M. D. H. (2013). Stability analysis and genotype x environment interactions of some Egyptian cotton cultivars cultivated. African Journal of Agricultural Research, 8(41), 5156 - 5160. Dimova, D., Valcheva, D, Zaprianov, S. & Mihova, G. (2006). Ecological plasticity and stability of yield from winter barley varieties. Field Crops Studies, 3(2), 197 - 203. Eberhart, S. A. & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Sci., 6(1), 36 - 40. https://doi.org/10.2135/. Farias, F. J. C., De Carvalho, J. L., Da Silva F. & Teodoro, P. E. (2016). Biplot analysis of phenotypic stability in upland cotton genotypes in Mato Grosso. Genetics and Molecular Research 15(2), gmr8009. https://doi.org/10.4238/gmr.15028009. Finlay, K. W. & Wilkinson, G. N. (1963). The analysis of adaptation in a plant breeding program. Australian Journal of Agricultural Research, 14, 742 - 754. Güvercİn, R.Ș., Karademİr, E., Karademİr, Ç., Özkan, N., Ekİncİ, R. & Borzan, G. (2017). Adaptability and stability analysis of some cotton (Gossypium hirsutum L.) cultivars in East Mediterranean and GAP region (South-Eastern Anatolia Project) conditions. Journal article: Harran Tarım ve Gıda Bilimleri Dergisi / Harran Journal of Agricultural and Food Science, 21(1), 41 – 52. Iqbal, M. Z., Nazir, S., Rahman, S. U. & Younas, M. (2018). Stability analysis of candidate bollgard bt cotton (Gossypium hirsutum L.) genotypes for yield traits. Int. J. Biosci. 13, 55 - 63. https://doi.org/10.12692/. Kang, M. S. (1993). Simultaneous selection for yield and stability in crop performance trial. Agronomy Journal, 85, 754 - 757. Kang, M. S. & Magari, R. (1995). STABLE: Basic program for calculating yield-stability statistics. Agronomy Journal, 87, 276 - 277. Khalifa, H. S, Baker, K. A. & Mahrous, H. (2010). Simultaneous selection for yield and stability in some Egyptian cotton genotypes. Egypt J. Plant Breed., 14(2), 33 - 41. Kumbhalkar, H. B., Gawande, V. L., Deshmukh, S. B., Gotmare, V. & Waghmare, V. N. (2021). Genotype x environment interaction for seed cotton yield and component traits in upland cotton (Gossypium hirsutum L.). Electronic Journal of Plant Breeding, 12(4), 1209 – 1217. https://doi.org/10.37992/2021.1204.166 India. Lin, C. S., Binns, M. R. & Lefkovitch, L. P. (1986), Stability Analysis: Where Do We Stand? Crop Science, 26, 894 – 900. Maleia, M. P., Raimundo, A., Moiana, L. D., Teca, J. O.,Chale, F., Jamal, E., Dentor, J. N. & Adamugy, B. A. (2017). Stability and adaptability of cotton (Gossypium hirsutum L.) genotypes based on AMMI analysis. Aust. J. Crop Sci., 11(4), 367 - 372. Maleia, M. P., Jamal, E. C., Savanguane, J. W., João, J. & Teca, J. O. (2019) Stability and Adaptability of Cotton (Gossypium hirsutum L.) Genotypes under Multi Environmental Conditions in Mozambique. J. Agron. Agri. Sci., 2, 17. Mare, M., Chapepa, B. & Mubvekeri, W. (2020). Multi-Locational Evaluation of Medium-Staple Cotton Genotypes for Seed-Cotton Yield under the Middleveld Agro-Ecological Zones of Zimbabwe. https://doi.org/10.21203/rs.3.rs-43613/v1 (in press). Moiana, L. D., Filho, P. S., Gonçalves-Vidigal, M. S., Maleia, M. P. & Mindo, N. (2014). Application of mixed models for the assessment genotype and environment interations in cotton (Gossypium hirsutum) cultivars in Mozambique. Afr. J. Bio-Technol., 13(19), 1985 - 1991. Orawu, M., Gladys, A., Lastus, S., George, O. & Chris, O. (2017).Yield stability of cotton genotypes at three diverse agro-ecologies of Uganda. Journal of Plant Breeding and Genetics, 5(3), 101 - 114. Patil, A. E., Deosarkar, D. B. & Kalyankar, S. V. (2017). Impact of genotype x environment interaction on the heterosis and stability for seed-cotton yield on heterozygous and homozygous genotypes in cotton (Gossypium hirsutum L.). Indian Journal of Genetics, 77(1), 119 - 125. Patil, A. E., Deosarkar, D. B. & Puttawar, M. R. (2018). Environmental impact on the stability of gene action for seed cotton yield in cotton (Gossypium hirsutum L.). International Journal of Current Microbiology and Applied Science, 7(1), 1319 - 1329. Pretorius, M. M., Allemann, J. & Smith, M. F. (2015). Use of the AMMI model to analyse cultivar-environment interaction in cotton under irrigation in South Africa. Afr. J. Agric., 2, 76 - 80. Riaz, M., Naveed, M., Farooq, J., Farooq, A., Mahmood, A., Rafiq, Ch. M., Nadeem, M. & Sadiq, A. (2013). Ammi analysis for stability, adaptability and GE interaction studies in cotton (Gossypium hirsutum L.). Journal of Animal and Plant Sciences, 23(3), 865 - 871. Riaz, M., Farooq, J., Ahmed, S., Amin, M., Chatta, W. S., Ayoub, M. & Kainth, R. A. (2019). Stability analysis of different cotton genotypes under normal and water deficit conditions. Journal of Integrative Agriculture, 18(6), 1257 – 1265. Sadabadi, M. F, Ranjbar, G. A., Zangi, M. R., Tabar, S. K. & Zarini, H. N. (2018). Analysis of stability and adaptation of cotton genotypes using GGE biplot method. Trakia Journal of Sciences, 1, 51 – 61. Shahzad, K., Qi, T., Guo, L., Tang, H., Zhang, X., Wang, H., Qiao, X., Zhang, M., Zhang, B., Feng, J., Shahid Iqbal, M., Wu, J. & Xing, C. (2019). Adaptability and stability comparisons of inbred and hybrid cotton in yield and fiber quality traits. Agronomy, 9, 516. https://doi.org/10.3390/agronomy9090516. Shashibhushan, D. & Patel, U. G. (2020). Stability analysis for seed cotton yield and its components of conventional, GMS and CMS based hybrids in upland cotton (Gossypium hirsutum L.). Journal of Pharmacognosy and Phytochemistry, 9(4), 3283 - 3293. Shukla, G. K. (1972). Some statistical aspects of partitioning genotype–environmental components of variability. Heredity, 29, 237 - 245. Simasiku, M. L., Lungu, D. M. & Tembo, L. (2020). Genotype by environment interaction of cotton genotypes for seed cotton yield in Zambia. Asian Journal of Research in Crop Science, 5(2), 20 - 28. Stoilova, A. (2004). Breeding value of new cotton lines. Plant Science, 41, 273 – 277 (Bg). Stoilova, A. (2010). Phenotypic stability of new cotton varieties with improved fibre quality. Agricultural Science and Technology, 2(1), 6 – 8 (Bg). Stoilova, A. & Dechev, D. (2001-2002). Genotype-environment interaction and phenotypic stability of yield in cotton lines. Genetics and Breeding, 31(1-2), 45 – 47 (Bg). Stoilova, A. & Dechev, D. (2002). Genotype-environment interaction and phenotypic stability of economic traits in cotton lines. Bulg. J. Agric. Sci., 8, 845 - 491. Valchinkov, St. (2000). Study of genotype-environment interaction in self-pollinated lines and hybrids of maize (Zea mays L.). Dissertation, Knezha, Bulgaria (Bg). Valkova, N. & Dechev, D. (2005). Phenotype stability of mutant cotton lines for some quality traits of fibre. Field Crops Studies, 2(1), 57 – 61. Valkova, N. & Dechev, D. (2006). Stability for yield and ability for mechanical harvest of advanced cotton lines. Field Crops Studies, 3(2), 223 – 226. Valkova, N. & Dechev, D. (2012). Using PC-analysis for evaluation of phenotypic stability in cotton. Field Crops Studies, 8(1), 91 – 96. Vavdiya, P. A., Chovatia, V. P., Bhut, N. M. & Vadodariya, G. D. (2021). G x E interactions and stability analysis for seed cotton yield and its components in cotton (Gossypium hirsutum L.). Electronic Journal of Plant Breeding (EJPB), 12(2), 396 - 402. Wricke, G. (1962). Evaluation method for recording ecological differences in field trials. Pflanzuecht, 47, 92 - 96. Xu, N., Fok, M., Zhang, G., Li, J. & Zhou, Z. (2013). The application of GGE Bi-plot analysis for evaluating test locations and mega-environment investigation of cotton regional trials. J. Integr. Agric. 13(9), 1921 – 1933. |
|
| Date published: 2025-06-24
Download full text