Influence of osmolites on dual-species biofilm formation
Ivo Ganchev, Lev Tribis
Abstract: In a large part of ecological niches, bacterial species are united in communities and develop together in the form of heterogeneous structures called biofilms, which are formed on surfaces of different nature and nature with the participation and as a result of the interaction of two or more bacterial species. In this study, we evaluated effects of the osmolality of the cultivating on the biofilm development and architecture of biofilms of the bacterium (B. subtilis) during their interactions with Escherichia coli K-12 1655 strain. Effects of the osmolality of the cultivating on bacterial biofilm formation and the mechanisms were analyzed by the crystal violet staining method combined with cultivated microbial analysis, and confocal laser scanning microscopy. A 24 h mature Bacillus subtilis and Escherichia coli dual-species biofilms were exposed to different concentration of NaCl of the cultivating. To investigate the effect of NaCl concentration, a series of experiments on the cultivation of biofilms in M63 medium (0.02 M KH2PO4, 0.04 M K2HPO4, 0.02 M (NH4)2SO4, 0.1 mM MgSO4 and 0.04 M glucose) were carried out according to the indicated scheme at the concentration of NaCl of 100 mM, 150 mM, and 200 mM. At cultivation in the cultural medium without NaCl, the bacterial growth rates of single-species biofilms of Bacillus subtilis strains and biofilms as a result of their interaction with Escherichia coli strains were similar and determines the mutualism between two strains in the structure of biofilms, but the temperature of the cultivating of the concentration of NaCl in the cultural medium over of 100 mM lead to the impeded growth and affect adversely the process of biofilm formation by the participation of B. subtilis 170 and E. coli K-12 1655, B. subtilis 168 and E. coli K-12 1655 strains, as a result of which a decrease in the value of the optical density, average thickness and relative spreading area and an inversely proportional increase in the ratio of the spreading area of the structures to their volume, but inhibits spore formation.
Keywords: Bacillus subtilis 170; Confocal laser scanning microscopy; Multispecies biofilms; Osmolality Regulation
Citation: Ganchev, I. & Tribis, L. (2025). Influence of osmolites on dual-species biofilm formation. Bulg. J. Agri. Sci., 31(2), 301–312.
References: (click to open/close) | Aguilar, C., Vlamakis, H., Guzman, A., Losick, R. & Kolter, R. (2010). KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. MBio., 1(1), e00035–10, 10-1128. Chai, Y., Beauregard, P. B., Vlamakis, H., Losick, R. & Kolter, R. (2012). Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. MBio., 3(4), 112–184, 10-1128. Dudin, O., Geiselmann, J., Ogasawara, H., Ishihama, A. & Lacoura, S. (2013). Repression of flagellar genes in exponential phase by CsgD and CpxR, two crucial modulators of Escherichia coli biofilm formation. Journal of Bacteriology, 196(3), 707–715. Garcia-Gutierrez, L., Zeriouh, H., Romero, D., Cubero, J., de Vicente, A. & Perez-Garcia, A. (2013). The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defense responses. Microb. Biotechnol., 6(3), 264–274. Geiger, C., Spieß, T., Korn, S. M., Kötter, P. & Entian, K. (2017). Specificity of subtilin-mediated activation of histidine kinase SpaK. Applied and Environmental Microbiology, 173(2), 521-529. Hamon, M. A. & Lazazzera, B. A. (2001). The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Molecular Microbiology, 42(5), 1199–1209. Heydorn, A., Nielsen, A., Hentzer, M., Sternberg, C., Givskov, M., Ersbøll, B. & Molin, S. (2000). Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology, 146(10), 2395–2407. Hoffmann, T., Schütz, A., Brosius, M., Völker, A. & Völker, U. (2002). High-salinity-induced iron limitation in Bacillus subtilis. Journal of Bacteriology, 184(3), 718–727. Hou, B., Meng, X.-R., Zhang, L.-Y., Tan, C., Jin, H., Zhou, R., Gao, J.-F., Wu, B., Li, Z. L., Liu, M., Chen, H.-C., Bi, D.-R. & Li, S.-W. (2014). TolC promotes ExPEC biofilm formation and curli production in response to medium osmolarity. BioMed. Research International, 2014(1), 1-10, 574274. Ionescu, M. & Belkin, S. (2009). Overproduction of Exopoly saccharides by an Escherichia coli K-12 rpoS mutant in response to osmotic stress. Applied and Environmental Microbiology, 75(2), 483–492. Jha, S. S, Joshi, S. J. & Geetha, S. J. (2016). Lipopeptide production by Bacillus subtilis R1 and its possible applications. Brazilian Journal of Microbiology, 47(4), 955–964. Jubelin, G., Vianney, A., Beloin, C., Ghigo, J. M., Lazzaroni, J.C., Lejeune, P. & Dorel, C. (2005). CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol., 187(6), 2038-2049. Kavamura, V. & Melo, I. (2014). Effects of different osmolarities on bacterial biofilm formation. Brazilian Journal of Microbiology, 45(2), 627-631. Kingston, A. W., Liao, X. & Helmann, J. D. (2013). Contributions of the sigma(W), sigma(M) and sigma(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol. Microbiology, 90(3), 502–518. Kobayashi, K. (2007). Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol. Microbiol., 66(2), 395–409. Kovács, А. & Kuipers, O. P. (2011). Rok Regulates yuaB expression during architecturally complex colony development of Bacillus subtilis 168. Journal of Bacteriology, 193(4), 998–1002. Lopez, D., Vlamakis, H. & Kolter, R. (2008). Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol. Rev., 33(1), 152–163. Luo, Y. & Helmann, J. D. (2012). Analysis of the role of Bacillus subtilis σM in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol. Microbiol., 83(3), 623–639. McLoon, A. L., Guttenplan, S. B., Kearns, D. B., Kolter, R. & Losick, R. (2011). Tracing the domestication of a biofilm-forming bacterium. J. Bacteriol., 193(8), 2027–2034. Mnif, I. & Ghribi, D. (2015). Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers/Peptide Science, 104(3), 129–147. Moons, P., Van Houdt, R., Aertsen, A., Vanoirbeek, K., Engelborghs, Y. & Michiels, C. W. (2006). Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Escherichia coli. Appl. Environ. Microbiol., 72(11), 7294–7300. Nagler, K., Setlow, P., Li, Y. & Moeller, R. (2014). High salinity alters the germination behavior of Bacillus subtilis spores with nutrient and nonnutrient germinants. Applied and Environmental Microbiology, 80(4), 1314–1321. Nagorska, K., Hinc, K., Strauch, M. A. & Obuchowski, M. (2008). Influence of the σB stress factor and yxaB, the gene for a putative exopolysaccharide synthase under σB control, on biofilm formation. J. Bacteriol., 190(10), 3546–3556. Ogasawara, H., Yamada, K., Kori, A., Yamamoto, K. & Ishihama, A. (2010). Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology, 156(8), 2470–2483. Park, S., Yang, Y., Kim, Y., Hong, J. & Lee, C. (2002). Characterization of Subtilein, a Bacteriocin from Bacillus subtilis CAU131 (KCCM 10257). J. Microbiol. Biotechnol., 12(2), 228–234. Powers, М., Sanabria-Valentín, E., Bowers, A. & Shank, E. (2015). Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens. Journal of Bacteriology, 197(13), 2129 –2138. Ramey, B. E., Koutsoudis, M., von Bodman, S. B. & Fuqua, C. (2004). Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol., 7(6), 602–609. Rendueles, O. & Ghigo, J. (2012). Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol. Rev., 36(5), 972–989. Rivardo, F., Turner, R. J., Allegrone, G., Ceri, H. & Martinotti, M. G. (2009). Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. App. Microbiol. Biotechnol., 83, 541–553. Romero, D., de Vicente, A., Olmos, J. L., Davila, J. C. & Pérez-García, A. (2007). Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J. Appl. Microbiol., 103(4), 969–976. Rubinstein, S., Kolodkin-Gal, I., McLoon, A., Chai, L. & Kolter, R. (2012). Osmotic pressure can regulate matrix gene expression in Bacillus subtilis. Molecular Microbiology, 86(2), 426–436. Sakamoto, A., Terui, Y., Yamamoto, T., Kasahara, T., Nakamura, M., Tomitori, H., Yamamoto, K., Ishihama, A., Michael, A.J., Igarashi, K. & Kashiwagi, K. (2012). Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int. J. Biochem. Cell Biol., 44(11), 1877–1886. Simoes, L. C., Simoes, M. & Vieira, M. J. (2007). Biofilm interactions between distinct bacterial genera isolated from drinking water. Applied and Environmental Microbiology, 73(19), 6192–6200. Steil, L., Hoffmann, T., Budde, I., Völker, U. & Bremer, E. (2003). Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. Journal of Bacteriology, 185(21), 6358–6370. Strauch, M. A., Bobay, B. G., Cavanagh, J., Yao, F., Wilson, A. & Le Breton, Y. (2007). Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J. Bacteriol., 189(21), 7720–7732. Verhamme, D. T., Murray, E. J. & Stanley-Wall, N. R. (2009). DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J. Bacteriol., 191(1), 100–108. Weir, J., Predich, M., Dubnau, E., Nair, G. & Smith, I. (1991). Regulation of spo0H, a gene coding for the Bacillus subtilis σ H factor. J. Bacteriol., 173(2), 521–529. Xie, J., Zhang, R., Shang, C. & Guo, Y. (2009). Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. African Journal of Biotechnology, 8(20), 5611-5619. Zeriouh, H., Romero, D., Garcia-Gutierrez, L., Cazorla, F. M., de Vicente, A. & Pérez-García, A. (2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol. Plant- Microbe Interact., 24(12), 1540– 1552. |
|
| Date published: 2025-04-28
Download full text