Long-term changes in phytoplankton composition in a large mountain reservoir used for cage aquaculture. A case study with Dospat Reservoir-Bulgaria
Kostadin Dochin

Abstract: Current research investigates changes in phytoplankton species composition over a seven-year period (2016-2022) and compares them with previous studies. Our objective is to focus on a three-year period (2019-2022) during which rainbow trout production decreases significantly, resulting in significant changes in algae species abundance and composition. During the same period, the species diversity of phytoplankton decreased two and a half times, and its biomass reached several times lower levels than when the rainbow trout farm operated at full capacity. The number of identified cyanoprokaryotes has decreased twice, is not abundant and is almost not found among the dominant species. The adverse facts clearly confirm the impact of cage aquaculture on the eutrophication of Dospat Reservoir. We can predict with confidence that, in the next few years, the resumption of the production process will lead to a deterioration of the ecological status of the Dospat Reservoir, that will negatively affect the composition and structure of phytoplankton.
Keywords: cage fish farming; change; eutrophication; lack of production; negative impact; phytoplankton diversity
Citation: Dochin, K. (2025). Long-term changes in phytoplankton composition in a large mountain reservoir used for cage aquaculture. A case study with Dospat Reservoir – Bulgaria. Bulg. J. Agric. Sci., 31(1), 212–224.
References: (click to open/close) | Anneville, O., Gammeter, S. & Straile, D. (2005). Phosphorus decrease and climate variability: Mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshwater Biology, 50, 1731–1746. Antenucci, J. P., Ghadouani,A., Burford, M. A. & Romero, J. R. (2005). The long-term effect of artificial destratification on phytoplankton species composition in a subtropical reservoir. Freshwater Biology, 50, 1081–1093. Beveridge, M. C. M. (1984). Cage and Pen Fish Farming. Carrying Capacity Models and Environmental Impact. FAO Fish. Tech. Pap., Rome. 133. Borics, G., G.Varbiro, I. Grigorszky, E. Krasznai, S. Szabo & Tihamer K. (2007). A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Large Rivers 17, (3-4) Arch. Hydrobiol. Suppl., 161(3-4), 465-486. Chen, D. & Zheng, A. R. (2005). Contamination of N, P and organic matters from cage culture and its assessment. Fujian Journal of Agricultural Sciences, 20(s1), 57-62 (Ch). Cox, E. J. (1996). Identification of freshwater diatoms from live material. Chapman & Hall, London, 158 pp. Crossetti, L. O. & Bicudo, C. E. M. (2008 a). Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): The assemblage index application. Hydrobiologia, 610, 161–173. Crossetti, L. O. & Bicudo, C. E. M. (2008b). Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Garças Reservoir, over 8 years. Hydrobiologia, 614, 91–105. Deisinger, G. (1984). Guide to the identification of planktonic algae in Carinthian lakes and their biomass. Carinthian Institute for Lake Research, Klagenfurt, Austria, 65 pp. Demir, N., Kirkagac, M. U., Pulatsü, S. & Bekcan, S. (2001). Influence of trout cage culture on water quality, plankton and benthos in an Anatolian Dam lake. The Israeli Journal of Aquaculture – Bamidgeh, 53(3-4), 15-127. Dochin, K. (2015). Seasonal dynamics and species composition of the phytoplankton in Kardzhali and Dospat reservoirs. PhD Thesis, Sofia University “St. Kliment Ohridski”, 201. Dochin, K. (2019).Phytoplankton functional and morphological groups in large reservoirs used for aquaculture in Bulgaria. Bulg. J. Agric. Sci., 25(1), 166–176. Dochin, K. T. & Stoyneva, M. P. (2014). Effect of long-term cage fish farming on the phytoplankton biodiversity in two large Bulgarian reservoirs. Ber. nat.-med. Verein Innsbruck (Berichte des naturwissenschaftlich-medizinischen Vereins), 99, 49-96. Dochin, K. T. & Stoyneva, M. P. (2016). Phytoplankton of the Dospat Reservoir (Rhodopi Mts, Bulgaria) – indicator of negative trend in reservoir development due to long-term cage fish farming. Ann. Univ. Sof., Fac. Biol., Book 2-Botany, 99, 47-60. Dokulil, M. T. & Teubner, K. (2003). Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes. Do they occur? Hydrobiologia,502, 65–72. Guiry, M. D. & Guiry, G. M. (2023). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. (searched on 23 May 2023). Huang, Y. Li, Ji, Y., Nwankwegu, D., Lai, A. S., Yang, Q., Wang, Z., Wei, K. J. & Norgbey, E. (2020). Study on nutrient limitation of phytoplankton growth in Xiangxi Bay of the Three Gorges Reservoir, China. Sci. Total Environ., 723, 138062. Huszar, V., C. Kruk & Caraco N. (2003). Steady state of phytoplankton assemblage of phytoplankton in four temperate lakes (NE USA). Hydrobiologia, 502, 97–109. Kruk, C., Mazzeo, N., Lacerot, G. & Reynolds, C. S. (2002). Classification schemes for phytoplankton: A local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research, 24, 901–912. Liu, X., Qian, K., Chen, Y. & Gao, J.(2017). A comparison of factors influencing the summer phytoplankton biomass in China’s three largest freshwater lakes: Poyang, Dongting, and Taihu. Hydrobiologia, 792, 283–302. Mazzeo, N., Rodrı́guez-Gallego, L., Kruk, C., Meerhoff, M., Gorga, J., Lacerot, G., Quintans, F., Loureiro, M., Larrea, Jr. D. & Garcı́a-Rodrı́guez, F. (2003). Effects of Egeria densa Planch. Beds on a shallow lake without piscivorous fish. Hydrobiologia, 506–509, 591–602. Michev, T. M. & Stoyneva, M. P. (Eds.) (2007). Inventory of Bulgarian Wetlands and their Biodiversity. Part 1: Non-Lotic Wetlands. Publ. House Elsi-M, Sofia, 364 + CD supplement. Miranda, T. O., Lima, H. S., Galon, B., Veronez, A. C., Moretti, M. S., Roper, J. J. & Gomes, L. C. (2016). Changes in water quality and the phytoplankton community associated with tilapia cage farming in tropical lakes. Aquat. Living Resour,29, 403. Moura, A. N., Bittencourt-Oliveira, M. C., Dantas, Ê. W. &Toledo Arruda Neto, J. D. (2007). Phytoplanktonic associations: A tool to understanding dominance events in a tropical Brazilian reservoir. Acta Botanica Brasiliensis, 21, 641–648. Moustaka-Gouni, M., Vardaka, E. & Tryfon, E. (2007). Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): Steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia, 575, 129–140. Naidenov, V. & Saiz, D. (1977). The plankton in the Dospat Reservoir in the first few years after storage. Hydrobiologia (Sofia), 5, 24- 37 (Bg). Namin, J. I., Safarbibi, K., Noveirian, H. A. & Amini, K. (2021). Effects of cage culture of rainbow trout, Oncorhynchus mykiss on phytoplankton and zooplankton communities (Case study: Golestan Reservoir 1, Gorgan, Iran).Caspian Journal of Environmental Sciences, 20(1), 1-15. Naselli-Flores, L. & Barone, R. (2003). Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia, 502, 133–143. Niesel, V. E., Hoehn, R. Sudbrack, H., Willmitzer & Chorus, I. (2007). The occurrence of the Dinophyte species Gymnodinium uberrimum and Peridinium willei in German reservoirs. Journal of Plankton Research, 29, 347–357. Padisák, J. & Reynolds, C. S. (1998). Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophicatioon and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia, 384, 41–53. Padisák, J., Barbosa,F. A. R., Koschel, R. & Krienitz, L. (2003a). Deep layer cyanoprokaryota maxima are constitutional features of lakes: Examples from temperate and tropical regions. Archiv für Hydrobiologie, Special Issues, Advances in Limnology, 58, 175–199. Phillips, M. C., Beveridge, M. C. M. & Ross, L. G.(1985). The environmental impact of salmonid cage culture on inland fisheries: present status and future trends. J. Fish Biol., 27, 123-137. Pitta, P., Karakassis, I., Tsapakis, M. & Zivanovic, S. (1999). Natural vs. Mariculture induce variability in nutrients and plankton in the eastern Mediterranean. Hydrobiologia, 391, 181-194. Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24(5), 417-428. Rott, E. (1981). Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie, 43(1), 34-62. Salmaso, N. (2002). Ecological patterns of phytoplankton assemblages in Lake Garda: Seasonal, spatial and historical features. Journal of Limnology, 61, 95–115. Soares, M. C. S., Huszar,V. L. M. & Roland, F. (2007). Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River Research and Applications,23, 698–714. Toporowska, M., Pawlik- Skowroska, B., Krupa, D. & Kornijov, R. (2010). Winter versus summer blooming of phytoplankton of shallow lakes: effect of hypertrophic conditions. Polish Journal of Ecology,58(1), 3-12. Wilk-Wozniak, E., Ligeza, S. & Shubert, E. (2013).Effect of water quality on phytoplankton structure in oxbow lakes under anthropogenic and non-anthropogenic impacts. Clean-Soil, Air, Water,41(9999), 1-7. Zhang, M., Dong, J., Gao, Y., Liu, Y., Zhou, C., Meng, X., Li, X., Li, M., Wang, Y., Dai, D. & Lv, X. (2021). Patterns of phytoplankton community structure and diversity in aquaculture ponds, Henan, China. Aquaculture, 544, 737078. |
|
| Date published: 2025-02-25
Download full text