Study of the immune response of pepper varieties to infection with the pathogen Sclerotinia sclerotiorum
Nataliya Karadzhova, Petar Chavdarov
Abstract: The immune response of pepper varieties grown in greenhouses to Sclerotinia sclerotiorum (Lib.) de Bary was studied. Six varieties of Capsicum annuum L. were included in the experiment, of which 5 were Bulgarian (sweet peppers Sivriya, Ivaylovska kapiya, White kapiya, Bulgarian ratund and hot pepper Dzhulyunska shipka) and Pirouette F1 of the Syngenta AG Company. The resistance of pepper varieties to infection with the pathogen S. sclerotiorum was studied using the detached leaf assay (DLA) and detached fruit method. The effect of biological preparations (based on antagonists of Trichoderma viride, Bacillus subtilis and Enterobacter cloaceae) on the immune response of plants to infection with S. sclerotiorum was studied in greenhouse conditions on the pepper variety Pirouette F1. For this purpose, young plants grown against the background of introduced antagonists were infected with the pathogen S. sclerotiorum by decapitation of the stem. The results of the study indicate that the immune response of pepper plants depends on the variety and the biological agents that can cause induced resistance to infection. It has been established that the varieties Ivaylovska kapiya, Sivriya, Dzhulyunska shipka and Pirouette F1 are susceptible to infection by S. sclerotiorum. Susceptibility to the pathogen varies among pepper varieties.
Differences in the immune response of pepper varieties to S. sclerotiorum infection are expressed in the length of the incubation period, frequency of infection, rate of formation and number of sclerotia. The varieties Pirouette F1 and Dzhulyunska shipka have a weaker immune response (the incubation period of the disease is 4 days, infection rate is 31%). The varieties Sivriya (incubation period of the disease is 5 days, infestation 11%) and Ivaylovska kapiya (incubation period of the disease 4 days, infestation 22%) have a good immune response to infection. The formation of sclerotia in hot pepper fruits occurs two days earlier than in other varieties. It was established on the 8th day in this variety, and in other varieties – on the 10th day of infection. The biological products used influence the immune response of pepper to infection with S. sclerotiorum. The least development of stem necrosis was observed in the variant with the biological preparation „Trichodermin“, which was used for watering plants in the form of a liquid preparation with a working solution concentration of 1.1010 c/ml. The results obtained show the variability of disease resistance among popular pepper varieties grown in greenhouse conditions in Bulgaria.
Keywords: biological products; Capsicum annuum L.; resistance; varieties; white mold
Citation: Karadzhova, N. & Chavdarov, P. (2025). Study of the immune response of pepper varieties to infection with the pathogen Sclerotinia sclerotiorum. Bulg. J. Agric. Sci., 31(1), 160–166.
References: (click to open/close) | Abawi, G. S., Polach, F. J. & Molin, W. T. (1975). Infection of bean by ascospores of Whetzelinia sclerotiorum. Phytopathology, 65(6), 673–8. Ahmadi, M. R., Nikkhah, M. J., Aghajani, M. A. & Ghobakhloo, M. (2012). Morphological variability among Sclerotinia sclerotiorum populations associated with stem rot of important crops and weeds. World Appl. Sci. J., 20(11), 1561–1564. Andrade, C. M., Tinoco, M. L. P., Rieth, A. F., Maia, F. C. O. & Aragäo, F. J. L. (2016). Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathology, 65(4), 626–632. De Bary, A. (1884). Comparative morphology and biology of the fungi mycetozoa and bacteria. Oxford, 525. https://doi.org/10.5962/bhl.title.56861 Gonzalez, T. G., Henderson, D. M. & Koike, S. T. (1998). First report of bell pepper (Capsicum annuum) as a host of Sclerotinia minor in California. Plant Disease, 82(7), 832. Grau, C. R., Radke, V. L. & Gillespie, F. L. (1982). Resistance of soybean cultivars to Sclerotinia sclerotiorum. Plant Disease, 66(6), 506–508. Guimaraes, P. M., Quintana, A. C., Mota, A. P. Z., Berbert, P. S., Ferreira, D. d. S., de Aguiar, M. N., Pereira, B. M., de Araújo, A. C. G. & Brasileiro, A. C. M. (2022). Engineering resistance against Sclerotinia sclerotiorum using a truncated NLR (TNx) and a defense priming gene. Plants, 11(24), 3483. https:// doi.org/10.3390/plants11243483. Heffer Link, V. & Johnson, K. B. (2007). White Mold. The Plant Health Instructor. DOI: 10.1094/PHI-I-2007-0809-01. Hegedus, D. & Rimmer, S. (2005). Sclerotinia sclerotiorum: When “to be or not to be” a pathogen. FEMS Microbiology Letters, 251(2), 177–184. Hermosa, M. R., Grondona, I., Iturriaga, E. A., Diaz-Minguez, J. M., Castro, C., Monte, E. & Garcia-Acha, I. (2000). Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied Environ. Microbiol., 66(5), 1890-1898. Huang, H., Erickson, R. S. & Moyer, J. R. (2007). Effect of crop extracts on carpogenic germination of sclerotia, germination of ascospores and lesion development of Sclerotinia sclerotiorum. Allelopathy Journal, 20(2), 269-277. Hunter, J. E., Abawi, G. S. & Crosier, D. C. (1978). Effects of timing, coverage, and spray oil on control of white mould of snap bean with benomyl. Plant Disease Reporter, 62, 633–637. Kim, H. S., Hartman, G. L., Manandhar, J. B., Graef, G. L., Steadman, J. R. & Diers, B. W. (2000). Reaction of soybean cultivars to sclerotinia stem rot in field, greenhouse, and laboratory evaluations. Crop Science, 40(3), 665–669. Kora, C., McDonald, M. R. & Boland, G. J. (2008). New progress in the integrated Bibliography 200 managment of Sclerotinia rot. In: Ciancioa, A., Mukerhi, K.G. (Eds.), Integrated management of plants pests and diseases: Integrated management of diseases caused by fungi, phytoplasms and bacteria. Springer, Dordrecht, 243-270. Lavrova, O. I., Elansky, S. N. & Dyakov, Y. T. (2003). Selection of Phytophthora infestans isolates in asexual generations. Journal of the Russian Phytopathological Society, 4, 1-7 (Ru). Li, R., Rimmer, R., Buchwaldt, L., Sharpe, A. G., Séguin-Swartz, G. & Hegedus, D. D. (2004). Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genet. Biol., 41(8), 735–753. McCaghey, M., Willbur, J., Ranjan, A., Grau, C. R., Chapman, S., Diers, B., Groves, C., Kabbage, M. & Smith, D. L. (2017). Development and evaluation of Glycine max germplasm lines with quantitative resistance to Sclerotinia sclerotiorum. Front. Plant Sci., 8, 1495. doi: 10.3389/fpls.2017.01495. Pernezny, K. & Purdy, L. H. (2000). Sclerotinia diseases of vegetable and field crops in Florida. Univ. Fla. Ext. Plant Path. Fact sheet, 22. Pernezny, K., Momol, M. T. & Lopes, C. A. (2003a). White Mold. Compendium of Pepper Diseases. APS Press, St. Paul, MN, 22-23. Pernezny, P., Roberts, D., Murphy, J. & Goldberg, N. (2003b). Compendium of Pepper Diseases. APS Press, St. Paul, MN, 63. Purdy, L. H. (1979). Sclerotinia sclerotiorum. History, disease and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69(8), 875-880. Rocha-Ramirez, V., Omero, C., Chet, I., Horwitz, B. A. & Herrera-Estrella, A. (2002). Trichoderma atroviride G-Protein α-Subunit Gene tga1 is involved in mycoparasitic coiling and conidiation. ASM Journals, Eukaryotic Cell, 1(4), 594–605. Sanogo, S. (2003). Chile pepper and the threat of wilt diseases. Plant Health Progress, 4(1), 23. Satton, D., Fothergill, A. & Rinaldi, M. (2001). Guide to Pathogenic and Opportunistic Fungi. Mir, Moscow, 486 (Ru). Sedun, F. S. & Brown, J. F. (1987). Infection of sunflower leaves by ascospores of Sclerotinia sclerotiorum. Annals of Appl. Biol., 110(2), 275-284. Tsitsigiannis, D. I., Antoniou, P., Tjamos, S. & Paplomatas, E. (2008). Major diseases of tomato, pepper, and egg plant in green houses. The European Journal of Plant Science and Biotechnology, 2(1), 106–124. Winton, L. M., Leiner, R. H. & Krohn, A. L. (2006). Genetic diversity of Sclerotinia species from Alaskan vegetable crops. Canadian Journal of Plant Pathology, Revue Canadienne De Phytopathologie, 28(3), 426-434. Yanar, Y. & Miller, S. A. (2003). Resistance of pepper cultivars and accessions of Capsicum spp. to Sclerotinia sclerotiorum. Plant Disease, 87(3), 303–307. Zhao, H., Zhou, T., Xie, J., Cheng, J., Chen, T., Jiang, D. & Fu, Y. (2020). Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum. Microb. Genom., 6(3), e000345. doi: 10.1099/mgen.0.000345. PMID: 32141811; PMCID: PMC7200069. |
|
| Date published: 2025-02-25
Download full text