The Manufacturing nanofibrils of black soybean and testing of cross polarizers
Warji Warji

, Tamrin Tamrin

, Sapto Kuncoro

Abstract: Black soybean has a high protein content, has a more savory taste, contains antioxidants, can lower cholesterol levels, improve digestion and other benefits for the health of the human body. Black soybean is generally used as an ingredient of soy sauce, but can be processed into various types of food such as tempeh, tofu, milk, tauco and black soybean flour. Black soybean flour contains high protein so it has the potential to be a protein isolate.
The purpose of this study was to process black soybeans into soy protein isolate and convert to nanofibrils. Black soybeans was converted into soy flour using hammer mill and then five time defatted by hexane solution. Soybean meal without lipid was processed into soy protein isolate.
The material content in the form of black soybean seeds is 100%, the material content decreases during the process of isolation to 97% in the form of soybean meal, 63.05% in the form of defatted black soybean flour and 25.43% in the form of black soybean protein; consisting of 0.28% fat, 22.51% protein, 0.52% ash and 2.12% carbohydrates. The final protein content of black soybean protein in this study was about 88.49% on a dry basis so that the resulting protein can be classified as soy protein isolate because its value is close to 90%. Nanofibrils can be observed with a cross polarizer. Nanofibrils produced is long and branched in a diameter of several nanometers, obtained by heating the SPI suspension at pH 2.0 for 16 h.
Keywords: black soybean; cross polarizer; defatted; isolation; nanofibrils; soy protein isolate
Citation: Warji, W., Tamrin, T. & Kuncoro, S. (2025). The Manufacturing nanofibrils of black soybean and testing of cross polarizers. Bulg. J. Agric. Sci., 31(1), 69–74
References: (click to open/close) | Akkermans, C., van der Goot, A. J., Venema, F., Gruppen, J. M. & Boom, R. M. (2007). Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. Journal of Agricultural and Food Chemistry, 55(24), 9877-9882. https://doi.org/10.1021/jf0718897. Asan, T., Lister, I. N. E., Fachrial, E., Amalia, A., Widowati, W., Samin, B. & Liena, L. (2019). Potency of Black Soybean (Glycine max (L.) Merr) Extract and Daidzein as Antioxidant and Antihyaluronidase. Traditional Medicine Journal, 2(1), 52-58. https://doi.org/10.22146/mot.43615. Han, P., Tang, B. H., Guo, C. P., Shui, G. L., Pan Z. Y. & Lin, H. R. (2023). Combination of soy protein isolate and calcium chloride inhibits browning and maintains quality of fresh-cut peaches. Emirates Journal of Food and Agriculture, 35(6), 533-540. https://doi:10.9755/ejfa.2023.v35.i6.3118. Kumar, M., Suhag, R., Hasan, M., Dhumal, S., Radha, Pandiselvam, R., Senapathy, M., Sampathrajan, V., Punia, S., Sayed, A. A. S., Singh, S. & Kennedy, J. F. (2022). Black soybean (Glycine max (L.) Merr.): paving the way toward new nutraceutical. Critical Reviews in Food Science and Nutrition, 63(23), 1-27. https://doi.org/10.1080/10408398.2022.2029825. Lee, K. J., Baek, D. Y., Lee, G. A., Cho, G. T., So, Y. S., Lee, J. R., Ma, R. H., Chung, J. W. & Hyun, D. Y. (2020). Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces. Antioxidants, 9(3), 1-13. https://doi.org/10.3390/antiox9030213. Lu, W., Chen, X., Wang, J., Yang, X. & Qi, J. (2016). Enzyme-assisted subcritical water extraction and characterization of soy protein from heat-denatured meal. Journal of Food Engineering, 16(1), 250-258. https://doi.org/10.1016/j.jfoodeng.2015.09.006. Paglione, I. D. S., Galindo, M. V., de Souza, K. C., Yamashita, F., Grosso, C. R. F., Sakanaka, L. S. & Shirai, M. A. (2019). Optimization of the conditions for producing soy protein isolate films. Emirates Journal of Food and Agriculture, 31(4), 297-303. https://doi:10.9755/ejfa.2019.v31.i4.1933. Purwanti, N., Warji, W., Mardjan, S.S., Yuliani, S. & Schroën, K. (2017). Preparation of Multi-layered Microcapsules from Nanofibrils of Soy Protein Isolate using Layer-by-Layer Adsorption Method. IOP Conf. Series: Earth and Environmental Science, 147, 012009. https://doi.org/10.1088/1755-1315/147/1/012009. Rossier-Miranda, F. J., Schroën, K. & Boom, R. (2010). Mechanical characterization and pH response of fibril-reinforced microcapsules prepared by layer-by-layer adsorption. Langmuir, 26(24), 19106-19113. https://doi.org/10.1021/la1033542. Sagis, L. M. C., de Ruiter, R., Rossier-Miranda, F.J., de Ruiter, J, Schroën, K., van Aelst, A.C., Kieft, H. Boom, R. & van der Linden, E. (2008). Polymer microcapsules with a fiber-reinforced nanocomposite shell. Langmuir, 24(5), 1608-1612. https://doi.org/10.1021/la7032115. Warji, W., Mardjan, S.S., Yuliani, S. & Purwanti, N. (2017). Characterization of nanofibrils from soy protein and their potential applications for food thickener and building blocks of microcapsules. International Journal of Food Properties, 20(supp. 1), 1121-1131. https://doi.org/10.1080/10942912.2017.1336720. Warji, W., Mardjan, S. S., Yuliani, S., Schroën, K. & Purwanti, N. (2018). Flow Behavior of Isolate Protein from Soybeans var. Grobogan and Whey Protein Isolate at Acidic Condition under Various Heating Times. Jurnal Keteknikan Pertanian, 6(2), 171-178. https://doi.org/10.19028/jtep.06.2.171-178. Warji, W., Purwanti, N. Mardjan, S. S. & Yuliani, S. (2019). Portable Water Bath to Support Nanofibrils Processing. IOP Conf. Series: Earth and Environmental Science, 355, 012086. https://doi.org/10.1088/1755-1315/355/1/012086. Warji, W., Purwanti, N., Mardjan, S. S. & Yuliani, S. (2020). Measurement Method of Nanofibrils Length. IOP Conf. Series: Earth and Environmental Science, 537, 012033. https://doi.org/10.1088/1755-1315/537/1/012033. Warji, W., Purwanti, N., Mardjan, S.S. & Yuliani, S. (2021). Temperature and Heating Time of Forming Process of Nanofibrils of Whey Protein Isolate. IOP Conf. Series: Earth and Environmental Science, 830, 012067. https://doi.org/10.1088/1755-1315/830/1/012067. Warji, W., Purwanti, N., Mardjan, S.S. & Yuliani, S. (2021). The thickness of the microcapsule layers of the SPI nanofibrils. IOP Conf. Series: Earth and Environmental Science, 653, 012105. https://doi.org/10.1088/1755-1315/653/1/012105. Yu, J., Liu, Y., Qiu, A. & Wang, X. (2007). Preparation of isoflavones enriched soy protein isolate from defatted soy hypocotyls by supercritical CO2. LWT- Food Science and Technology, 40(5), 800-806. https://doi.org/10.1016/j.lwt.2006.03.017. |
|
| Date published: 2025-02-25
Download full text