The role of Tithonia diversifolia in sustaining crop productivity in acid soils
Andre Sparta

, Jajang Sauman Hamdani, Yuyun Yuwariah, Eliana Wulandari
Abstract: Acid soils with high distribution around the world, both in temperate and tropical areas, are being used for agricultural activities to support food production. In order to utilize plant productivity in acid soils, organic material such as Tithonia diversifolia is being used to solve several constraints in acid soils. This article focuses on the use of T. diversifolia in acid soils and its benefit in supporting plant productivity in these kinds of soils. Published literature related to potency T. diversifolia to solve several problems in acid soils were collected from database SCOPUS (www.scopus.com), Google Scholar (https://scholar.google.com/), and others. We found that: 1) T. diversifolia improves the physical properties of acid soils by reducing soil bulk density and improving soil porosity; 2) T. diversifolia improves the chemical properties of acid soils by reducing soil acidity and improving soil reaction, as well as soil available nutrients; 3) T. diversifolia potentially reduces heavy metal contamination in acid soils; 4) T. diversifolia, combined with other elements, can potentially mitigate greenhouse gas emissions in acid soils; and 5) T. diversifolia contributes to improving plant productivities in acid soils.
Keywords: acid soils; plant productivity; Tithonia diversifolia
Citation: Sparta, A., Hamdani, J. S., Yurwariah, Yu. & Wulandari, E. (2025). The role of Tithonia diversifolia in sustaining crop productivity in acid soils. Bulg. J. Agric. Sci., 31(1), 50–60.
References: (click to open/close) | Aboyeji, C. M., Adekiya, A. O., Dunsin, O., Agbaje, G. O., Olugbemi, O., Okoh, H. O. & Olofintoye, T. A. J. (2019). Growth, yield and vitamin C content of radish (Raphanus sativus L.) as affected by green biomass of Parkia biglobosa and Tithonia diversifolia. Agroforestry Systems, 93(3), 803–812. https://doi.org/10.1007/s10457-017-0174-6. Aboyeji, C. M., Okunlola, F. O., Aremu, C. O. & Afolayan, J. O. (2022). Evaluation of the Effect of Plantain Peel and Tithonia Leaves as Nutrient Sources on the Performance and Mineral Accumulation of Tomato (Solanum lycopersicum). Nigeria Agricultural Journal, 53(2), 186–192. https://www.ajol.info/index.php/naj/article/view/232671. Adejumo, S. A., Togun, A. O., Adediran, J. A. & Ogundiran, M. B. (2011). In-Situ Remediation of Heavy Metal Contaminated Soil Using Mexican Sunflower (Tithonia diversifolia) and Cassava Waste Composts. World Journal of Agricultural Sciences, 7(2), 224–233. Adekiya, A. O. (2019). Green manures and poultry feather effects on soil characteristics, growth, yield, and mineral contents of tomato. Scientia Horticulturae, 257, 108721. https://doi.org/10.1016/J.SCIENTA.2019.108721. Adekiya, A. O., Aremu, C., Agbede, T. M., Olayanju, A., Ejue, W. S., Adegbite, K. A., Olayiwola, I. E., Ajiboye, B. & Oni, A. T. (2021). Soil productivity improvement under different fallow types on Alfisol of a derived savanna ecology of Nigeria. Heliyon, 7(4), e06759. https://doi.org/10.1016/j.heliyon.2021.e06759. Agbede, T. M., Adekiya, A. O. & Ogeh, J. S. (2014). Response of soil properties and yam yield to Chromolaena odorata (Asteraceae) and Tithonia diversifolia (Asteraceae) mulches. Archives of Agronomy and Soil Science, 60(2), 209–224. https://doi.org/10.1080/03650340.2013.780127. Ahmat, F. L., Mugwe, J. N., Kimani, S. K. & Gweyi-Onyango, J. P. (2014). Maize response to Tithonia diversifolia and rock phosphate application under two maize cropping systems in Kenya. Journal of Applied Biosciences, 79(1), 6983. https://doi.org/10.4314/jab.v79i1.18. Ajayi, O. A. & Rasheed, A. (2017). Allelopathic Potentials Of Aqueous Extracts of Tithonia Diversifolia (Hemsley) A. Gray In Biological Control of Weeds in Cowpea Cropping System. International Journal of Agriculture and Economic Development, 5(1), 11. Asbon, P., Oloo, P. & Orangi, R. (2015). Effects of Tithonia diversifolia , farmyard manure and urea , and phosphate fertiliser application methods on maize yields in western Kenya. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 116(1), 1–9. Asrat, M., Yli-Halla, M. & Abate, M. (2020). Effects of Lime, Manure and Kitchen Ash Application on Yield and Yield Components of Faba Bean (Vicia faba L.) on Acidic Soils of Gozamin District. Journal of Plant Sciences, 8(2), 17. https://doi.org/10.11648/j.jps.20200802.11. Ayesa, S. A., Chukwuka, K. S. & Odeyemi, O. O. (2018). Tolerance of Tithonia diversifolia and Chromolaena odorata in heavy metal simulated-polluted soils and three selected dumpsites. Toxicology Reports, 5, 1134–1139. https://doi.org/10.1016/J.TOXREP.2018.11.007. Barman, M., Shukla, L. M., Datta, S. P. & Rattan, R. K. (2014). Effect of Applied Lime and Boron on the Availability of Nutrients in an Acid Soil. Journal of Plant Nutrition, 37(3), 357–373. https://doi.org/10.1080/01904167.2013.859698. Behera, S. K. & Shukla, A. K. (2015). Spatial Distribution of Surface Soil Acidity, Electrical Conductivity, Soil Organic Carbon Content and Exchangeable Potassium, Calcium and Magnesium in Some Cropped Acid Soils of India. Land Degradation & Development, 26(1), 71–79. https://doi.org/10.1002/LDR.2306. Berihun, T., Tolosa, S., Tadele, M. & Kebede, F. (2017). Effect of Biochar Application on Growth of Garden Pea (Pisum sativum L.) in Acidic Soils of Bule Woreda Gedeo Zone Southern Ethiopia. https://doi.org/10.1155/2017/6827323. Bian, M., Zhou, M., Sun, D. & Li, C. (2013). Molecular approaches unravel the mechanism of acid soil tolerance in plants. https://doi.org/10.1016/j.cj.2013.08.002. Chikuvire, T. J., Karavina, C., Parwada, C. & Maphosa, B. T. (2013). Lantana camara and Tithonia diversifolia leaf teas improve the growth and yield of Brassica napus. African Journal of Agricultural Research, 8(48), 6220–6225. https://doi.org/10.5897/AJAR12.2173. Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C. & Xu, J. (2017). Potential role of biochars in decreasing soil acidification - A critical review. Science of The Total Environment, 581–582, 601–611. https://doi.org/10.1016/J.SCITOTENV.2016.12.169. Dayo-Olagbende, E. & Akingbola, B. S. (2019). Combined Effects of Tithonia Mulch and Urea Fertilizer on Soil Physico-Chemical Properties and Maize Performance. Journal of Sustainable Technology, 10(1), 86–93. www.jost.futa.edu.ng. Endris, S. (2015). Yield Response of Maize to Integrated Soil Fertility Management on Acidic Nitosol of Southwestern Ethiopia. Article in Journal of Agronomy. https://doi.org/10.3923/ja.2015.152.157. Endris, S. (2019). Combined Application of Phosphorus Fertilizer with Tithonia Biomass Improves Grain Yield and Agronomic Phosphorus Use Efficiency of Hybrid Maize. https://doi.org/10.1155/2019/6167384. Fageria, N. K. & Nascente, A. S. (2014). Management of Soil Acidity of South American Soils for Sustainable Crop Production. Advances in Agronomy, 128, 221–275. https://doi.org/10.1016/B978-0-12-802139-2.00006-8. Fungo, B., Lehmann, J., Kalbitz, K., Tenywa, M., Thionģo, M. & Neufeldt, H. (2017). Emissions intensity and carbon stocks of a tropical Ultisol after amendment with Tithonia green manure, urea and biochar. Field Crops Research, 209, 179–188. https://doi.org/10.1016/J.FCR.2017.05.013. Fungo, B., Lehmann, J., Kalbitz, K., Thionģo, M., Tenywa, M., Okeyo, I. & Neufeldt, H. (2019). Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar. Biology and Fertility of Soils, 55(2), 135–148. https://doi.org/10.1007/S00374-018-01338-3/METRICS. Gervais Bilong, E., Abossolo-Angue, M., Ngome Ajebesone, F., Esir E Anaba, B. D., Madong, B. A., Nomo, L. B. & Bilong, P. (2017). Improving soil physical properties and cassava productivity through organic manures management in the Southern Cameroon. Heliyon, e09570. https://doi.org/10.1016/j.heliyon.2022.e09570. Gilbert, N. (2012). One-third of our greenhouse gas emissions come from agriculture. Nature, 1–2. https://doi.org/10.1038/nature.2012.11708. Gitahi, S. M., Piero, M. N., Mburu, D. N. & Machocho, A. K. (2021). Repellent Effects of Selected Organic Leaf Extracts of Tithonia diversifolia (Hemsl.) A. Gray and Vernonia lasiopus (O. Hoffman) against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). https://doi.org/10.1155/2021/2718629. Gurmessa, B. (2021). Soil acidity challenges and the significance of liming and organic amendments in tropical agricultural lands with reference to Ethiopia. Environment, Development and Sustainability, 23(1), 77–99. https://doi.org/10.1007/S10668-020-00615-2/METRICS. Hafifah, H., Sudiarso, S., Maghfoer, M. D. & Prasetya, B. (2016). The potential of Tithonia diversifolia green manure for improving soil quality for cauliflower (Brassica oleracea var. Brotrytis L.). Journal of Degraded and Mining Lands Management, 3(2), 499–506. https://doi.org/10.15243/jdmlm.2016.032.499. Hakim, N. & Mala, Y. (2012). Application of Organic Fertilizer Tithonia Plus to Control Iron Toxicity and Reduce Commercial Fertilizer Application on New Paddy Field. J Trop Soils, 17(2), 135–142. https://doi.org/10.5400/jts.2012.17.2.135. Imani Wa Rusaati, B., Kang, J.-W., Gendusa, P. A., Bisimwa, P. B., Kasali, J. L., Rolly, N. K., Park, J., Rehema, E. M., Masumbuko Ndabaga, C., Kaboyi, G. I., Nankafu, O. N. & Chirimwami, A. B. (2020). Influence of the application of Tithonia diversifolia and phosphate rocks on the performances of rainfed rice. Korean Journal of Agricultural Science, 47(3), 403–414. https://doi.org/10.7744/kjoas.20200029. Jama, B., Palm, C. A., Buresh, R. J., Niang, A., Gachengo, C., Nziguheba, G. & Amadalo, B. (2000). Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: A review. Agroforestry Systems, 49(2), 201–221. https://doi.org/10.1023/A:1006339025728. Ji, Y., Wu, P., Zhang, J., Zhang, J., Zhou, Y., Peng, Y., Zhang, S., Cai, G. & Gao, G. (2018). Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: A case study along the Le’an river. Chemosphere, 199, 361–371. https://doi.org/10.1016/J.CHEMOSPHERE.2018.02.045. Jiang, J., Xu, R. kou, Jiang, T. yu & Li, Z. (2012). Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 229–230, 145–150. https://doi.org/10.1016/J.JHAZMAT.2012.05.086. Jorge-Mustonen, P. S., Oelbermann, M. & Kass, D. C. L. (2013). Production of Phaseolus vulgaris L. Genotypes with Tithonia diversifolia (Hemsl.) Gray and Cajanus cajan (L.) Millsp. Agronomy, 3(1), 232–247. https://doi.org/10.3390/AGRONOMY3010232. Jorge Mustonen, P., Oelbermann, M. & Kass, D. C. L. (2012). Using Tithonia diversifolia (Hemsl.) Gray in a Short Fallow System to Increase Soil Phosphorus Availability on a Costa Rican Andosol. Journal of Agricultural Science, 4(2). https://doi.org/10.5539/jas.v4n2p91. Kato-Noguchi, H. (2020). Involvement of Allelopathy in the Invasive Potential of Tithonia diversifolia. Plants, 9(6), 766. https://doi.org/10.3390/PLANTS9060766. Kekere, O., Ademoye, A. M., Kareem, I. A. & Ekundayo, T. O. (2020). Assessment of Tithonia Diversifolia With Mycorrhizal Bioaugmentation in Phytoremediation of Lead and Zinc Polluted Soils. African Journal of Applied Research, 6(1), 1–12. https://doi.org/10.26437/ajar.01.04.2020.01. Kisinyo, P. O. (2012). Effects of lime, phosphorus and rhizobia on Sesbania sesban performance in a Western Kenyan acid soil. African Journal of Agricultural Reseearch, 7(18), 2800–2809. https://doi.org/10.5897/ajar11.1450. Kolawole, G. (2016). Nutrient Release Patterns of Tithonia Compost and Poultry Manure in Three Dominant Soils in the Southern Guinea Savanna, Nigeria. International Journal of Plant & Soil Science, 10(5), 1–8. https://doi.org/10.9734/ijpss/2016/25828. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/J.ENVINT.2019.105078. Kumar, M., Rajkhowa, D. J., Mahanta, K. & Choudhury, B. U. (2021). Biowaste Utilisation for Improving Soil Health and Crop Productivity in North Eastern India. https://www.researchgate.net/publication/352212807. Logsdon, S. D. (2012). Temporal variability of bulk density and soil water at selected field sites. Soil Science, 177(5), 327–331. https://doi.org/10.1097/SS.0B013E31824D8DB1. Mlangeni, A., Chiotha, S., Noel, A., Mlangeni, J. T., Sosten, S. & Chiotha, S. (2013). Potential of Tithonia diversifolia Chimato Composts in Enhancing Soil Carbon Sequestration. Environment and Natural Resources Research, 3(4). https://doi.org/10.5539/enrr.v3n4p58. Montanarella, L., Badraoui, M., Chude, V., Baptista Costa, I. D. S., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G.-L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez Henriquez, C. R., Mendonça Santos, M. de L., Taboada, M., Victoria, D. E., Alshankiti, A., Panah, S. K. A., El Mustafa El Sheikh, E. A., Hempel, J., Pennock, D., Camps Arbestain, M. & McKenzie, N. (2015). Status of the World’s Soil Resources Main report. Status of the World’s Soil Resources Main Report (Pp. 1-607). Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Italy, 608. https://kerwa.ucr.ac.cr/handle/10669/78011. Mustonen, P. S. J., Oelbermann, M. & Kass, D. C. L. (2014). Response of the common bean (Phaseolus vulgaris L.) to Tithonia diversifolia (Hamsl.) Gray biomass retention or removal in a slash and mulch agroforestry system. Agroforestry Systems, 88(1), 1–10. https://doi.org/10.1007/s10457-013-9650-9. Mwangi, P. & Mathenge, P. (2014). Comparison of tithonia (Tithonia diversifolia) green manure, poultry manure and inorganic sources of nitrogen in the growth of kales (Brassicae oleraceae) in Nyeri county, Kenya. African Journal of Food, Agriculture, Nutrition and Development, 14(63), 8791–8808. https://doi.org/10.18697/AJFAND.63.12320. Ndung’u, M., Ngatia, L. W., Onwonga, R. N., Mucheru-Muna, M. W., Fu, R., Moriasi, D. N. & Ngetich, K. F. (2021). The influence of organic and inorganic nutrient inputs on soil organic carbon functional groups content and maize yields. Heliyon, 7(8). https://doi.org/10.1016/j.heliyon.2021.e07881. Ngosong, C., Njume Akeme, C., Suh Tening, A., Mfombep, P. M., Njume, C. A., Tening, A. S., Trevisan, M., Khan, F., Jose Alves Bertalot, M., Mendoza, E., Elo de Economia Associativa-Botucatu, I., Paulo, S. & Krishna Balla, M. (2016). Comparative Advantage of Mucuna and Tithonia Residue Mulches for Improving Tropical Soil Fertility and Tomato Productivity. International Journal of Plant & Soil Science, 12(3), 1–13. https://doi.org/10.9734/IJPSS/2016/28093. Obiakara, M. C. & Fourcade, Y. (2018). Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLOS ONE, 13(9), e0202421. https://doi.org/10.1371/JOURNAL.PONE.0202421. Olawepo, G. K., Ogunkunle, C. O., Fatoba, P. O., Animasaun, D. A., Benuwabor, P. O. & Danzaki, M. M. (2020). Heavy Metal Uptake Responses in Plants Grown on Crude Oil-Polluted Soils as Prospects for Phytoremediation. Journal of Applied Sciences and Environmental Management, 24(7), 1153–1159. https://doi.org/10.4314/JASEM.V24I7.5. Omenda, J., Ngetich, F. K., Kiboi, M. & Mucheru-Muna, M. (2020). Soil Organic Carbon and Acid Phosphatase Enzyme Activity Response to Phosphate Rock and Organic Inputs in Acidic Soils of Central Highlands of Kenya in Maize. https://doi.org/10.9734/ijpss/2019/v30i230169. Omokhua, A. G., Abdalla, M. A., Van Staden, J. & McGaw, L. J. (2018). A comprehensive study of the potential phytomedicinal use and toxicity of invasive Tithonia species in South Africa 06 Biological Sciences 0605 Microbiology. BMC Complementary and Alternative Medicine, 18(1), 1–15. https://doi.org/10.1186/S12906-018-2336-0/TABLES/8. Opala, P. (2014). Response of Maize to Organic and Inorganic Sources of Nutrients in Acid Soils of Kenya. American Journal of Experimental Agriculture, 4(6), 713–723. https://doi.org/10.9734/ajea/2014/6415. Reis, M. M., Santos, L. D. T., Pegoraro, R. F., Colen, F., Rocha, L. M. & Ferreira, G. A. D. P. (2016). Nutrition of Tithonia diversifolia and attributes of the soil fertilized with biofertilizer in irrigated system. Revista Brasileira de Engenharia Agricola e Ambiental, 20(11), 1008–1013. https://doi.org/10.1590/1807-1929/agriambi.v20n11p1008-1013. Rioba, N. B., Opala, P. A., Bore, J. K., Ochanda, S. O. & Sitienei, K. (2020). Effects of Vermicompost, Tithonia Green Manure and Urea on Quality of Swiss Chard (Beta vulgaris L. var. cicla L.) in Kenya. Sustainable Agriculture Research, 9(2), 55. https://doi.org/10.5539/sar.v9n2p55. Rizkawati, M. (2021). Potential of Tithonia diversifolia Hemsley A. Gray (Kembang Bulan) Leaf Extract as Anti-Cancer Agents. Biology, Medicine, & Natural Product Chemistry, 10(2), 87–91. https://doi.org/10.14421/biomedich.2021.102.87-91. Ruíz, T. E., Febles, G. J., Galindo, J. L., Savón, L. L., Chongo, B. B., Torres, V., Cino, D. M., Alonso, J., Martínez, Y., Gutiérrez, D., Crespo, G. J., Mora, L., Scull, I., La O, O., González, J., Lok, S., González, N. & Zamora, A. (2014). Tithonia diversifolia, its possibilities in cattle rearing systems. Cuban Journal of Agricultural Science, 48(1), 79–82. Santri, J. A., Maas, A., Utami, S. N. H. & Yusuf, W. A. (2019). Application of lime and compost on the newly established field with acid sulfate soil type in the Belandean experimental field, South Kalimantan for agricultural cultivation. IOP Conference Series: Earth and Environmental Science, 393(1), 012002. https://doi.org/10.1088/1755-1315/393/1/012002. Scrase, F. M., Sinclair, F. L., Farrar, J. F., Pavinato, P. S. & Jones, D. L. (2019). Mycorrhizas improve the absorption of non-available phosphorus by the green manure Tithonia diversifolia in poor soils. Rhizosphere, 9, 27–33. https://doi.org/10.1016/J.RHISPH.2018.11.001. Senarathne, S. H. S., Atapattu, A. J., Raveendra, T., Mensah, S. & Dassanayake, K. B. (2019). Biomass allocation and growth performance of Tithonia diversifolia (Hemsl.) A. Gray in coconut plantations in Sri Lanka. Agroforestry Systems, 93(5), 1865–1875. https://doi.org/10.1007/s10457-018-0290-y. Tang, C., Weligama, C. & Sale, P. (2013). Subsurface Soil Acidification in Farming Systems: Its Possible Causes and Management Options. Molecular Environmental Soil Science, 389–412. https://doi.org/10.1007/978-94-007-4177-5_13. Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N. & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. https://doi.org/10.1088/1748-9326/8/1/015009. von Uexküll, H. R. & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171(1), 1–15. https://doi.org/10.1007/BF00009558/METRICS. Wahyudi, I. & Handayanto, E. (2015). The potential of legume tree prunings as organic matters for improving phosphorus availability in acid soil. Journal of Degraded and Mining Lands Management, 2(2), 259–266. https://doi.org/10.15243/jdmlm.2014.022.259. Wang, N., Xu, R. K. & Li, J. Y. (2011). Amelioration of an acid ultisol by agricultural by-products. Land Degradation & Development, 22(6), 513–518. https://doi.org/10.1002/LDR.1025. Yulnafatmawita & Anggriani, F. (2013). Fresh Organic Matter Application to Improve Aggregate Stability of Ultisols under Wet Tropical Region. Journal of Tropical Soils, 18(1), 33. https://doi.org/10.5400/jts.2013.v18i1.33-44. |
|
| Date published: 2025-02-25
Download full text