Effect of freezing and drying on the bioactive compounds and antioxidant potential of garlic
Nassima Senani
, Samia Bedouhene
, Thinhinane Rekeb
, Lamia Bouadjela
Abstract: Garlic (Allium sativum. L.) is a culinary and medicinal plant containing various bioactive molecules. The preservation process of garlic is important because it considerably influences the composition of the final product, as well as its biological activity. The choice of a preservation method for garlic is a compromise between convenience and quality. Few studies compare the effects of preservation methods on the bioactive potential of this condiment; hence the interest of this study which aims to evaluate the effect of freezing and drying on the bioactive compounds of garlic. Three samples of local garlic were prepared "fresh, frozen at -20°C, and dried in an oven at 50°C". According to the ANOVA statistical analysis (p< 0.05), the contents of proteins, reducing sugars, polyphenols, flavonoids, vitamin C, haven’t shown significant difference between frozen and fresh garlic. Contrast to this, drying significantly reduced the content of protein (59.6 %), reducing sugars (72.61 %), polyphenols (58.6 %), flavonoids (38.13 %) and vitamin C (76.9 %). Peroxidase activity persisted after freezing, but decrease after drying (68 % loss) compared to the initial activity. The percentage of DPPH radical scavenging was higher for fresh (37.78 %) and frozen garlic (43.46 %) extracts at the lowest concentration, in contrast to dried garlic with 20.91 % at the highest concentration. The results of this study showed that freezing seems to extend the shelf life of garlic because it preserves most of the biochemical and bioactive substances.
Keywords: bioactive compounds; conservation; drying; food quality; freezing; Garlic
Citation: Senani, N., Bedouhene, S., Rekeb, T. & Bouadjela, L. (2024). Effect of freezing and drying on the bioactive compounds and antioxidant potential of garlic. Bulg. J. Agric. Sci.,30(6), 1128–1135
References: (click to open/close) | Agüero, M. V., Ansorena, M. R., Roura, S. I. & Del Valle, C. E. (2008). Thermal inactivation of peroxidase during blanching of butternut squash. LWT – Food Science and Technology, 41(3), 401-407. Ansary, J., Forbes-Hernández, T. Y., Gil, E., Cianciosi, D., Zhang, J., Elexpuru-Zabaleta, M., Simal-Gandara, J., Giampieri, F. & Battino, M. (2020). Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants (Basel, Switzerland), 9(7), 619. Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R. & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants (Basel, Switzerland), 8(4), 96. Aydoğmuş, Z., Çetin, S. M. & Özgür, M. Ü. (2002). Determination of ascorbic acid in vegetables by derivative spectrophotometry. Turkish Journal Chemistry, 26(5), 697-704. https://journals.tubitak.gov.tr/chem/vol26/iss5/8. Bedouhène, S., Dang, P. M., Hurtado-Nedelec, M. & Elbenna, J. (2020). Neutrophil degranulation of azurophil and specific granules. Methods in Molecular Biology, 2087, 215˗222. Bradley, P. P., Priebat, D. A., Christensen, R.D. & Rothstein, G. (1982). Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology, 78(3), 206˗209. Blamo, P. A. Jr., Thuy Pham, H. N. & Nguyen, T. H. (2021). Maximising phenolic compounds and antioxidant capacity from Laurencia intermedia using ultrasound-assisted extraction. AIMS Agriculture and Food, 6(1), 32˗48. Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT–Food Science and Technology,28(1), 25-30. Chen, H. Y., Lin, Y. C. & Hsieh, C. L. (2007). Evaluation of antioxidant activity of aqueous extract of some selected nutraceutical herbs. Food Chemistry, 104(4), 1418˗1424. Çubukçu, H. C., Kiliçaslan, N. S. D. & Durak, I. (2019). Different effects of heating and freezing treatments on the antioxidant properties of broccoli, cauliflower, garlic and onion. An experimental in vitro study. Sao Paulo Medical Journal, 137, 407˗413. Diao, M., Ramatou, H. D., Kiessoun, K. & Mamoudou, H. D. (2019). Etude comparative des peroxydases de dix (10) plantes supérieures couramment rencontrées au Burkina Faso. International Journal of Biological and Chemical Sciences, 13(6), 2533- 2545. Gong, H., Wang, T., Hua, Y., Wang, W.-D., Shi, C., Xu, H.-X., Li, L.-L., Zhang, D.-P., Sun, Y.-E. & Yu, N.-N. (2022). Garlic varieties and drying methods affected the physical properties, bioactive compounds and antioxidant capacity of dried garlic powder. CyTA-J. Food, 20(1),111-119. Hashemi, S. A., Ghorbanoghli, S., Manouchehri, A. A. & Hatkehlouei, M. B. (2019). Pharmacological effect of Allium sativum on coagulation, blood pressure, diabetic nephropathy, neurological disorders, spermatogenesis, antibacterial effects. AIMS Agriculture and Food, 4(2), 386˗398. Hsu, H. Y., Tsai, Y. C., Fu, C. C. & Wu, J. S. B. (2012). Degradation of ascorbic acid in ethanolic solutions. Journal of Agricultural and Food Chemistry, 60(42), 10696-10701. Jagota, S. K. & Dani, H. M. (1982). A new colorimetric technique for the estimation of vitamin C using folin phenol reagent. Analytical Biochemistry, 127(1), 178˗182. Januarti, I., Taufiq, H. & Sulistyaningsih, S. (2019). The correlation of total flavonoid and total phenolic with antioxidant activity of single bulb garlic (Allium Sativum) from tawangmangu and magetan. Journal of Pharmaceutical Sciences and Community, 16(2), 96-103. Kodera, Y., Kurita, M., Nakamoto, M. & Matsutomo, T. (2020). Chemistry of aged garlic: Diversity of constituents in aged garlic extract and their production mechanisms via the combination of chemical and enzymatic reactions. Experimental and Therapeutic Medicine, 19(2), 1574-1584. Lisciani, S., Gambelli, L., Durazzo, A., Marconi, S., Rossetti, E., Gabrielli, P., Aguzzi, A., Temperini, O. & Marletta, L. (2017). Carbohydrates components of some Italian local landraces: garlic (Allium sativum L.). Sustainability, 9(10), 1922. Locatelli, D. A., Altamirano, J. C., González, R. E. & Camargo, A. B. (2015). Home-cooked garlic remains a healthy food. Journal of Functional Foods,16, 1-8. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. Maina, S., Ryu, D. H., Bakari, G., Misinzo, G., Nho, C. W. & Kim, H. Y. (2021). Variation in phenolic compounds and antioxidant activity of various organs of African cabbage (Cleome gynandra L.) accessions at different growth stages. Antioxidants (Basel, Switzerland), 10(12), 1952. Mercier-Fichaux, B. (2016). Garlic as a functional food and spice!. Phytothérapie, 3(14), 176˗180. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426˗428. Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Oliver Chen, C-Y. & Lima, G. P. P. (2017). Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. In: Soto-Hernandez, M., Palma-Tenango, M., Garcia-Mateos, M. D. R. (Eds.), Phenolic Compounds-Biological Activity. IntechOpen, London. Najman, K., Sadowska, A. & Hallmann, E. (2020). Influence of thermal processing on the bioactive, antioxidant, and physicochemical properties of conventional and organic agriculture black garlic (Allium sativum L.). Applied Sciences, 10(23), 8638. Panyod, S., Wu, W. K., Chen, P. C., Chong, K. V., Yang, Y. T., Chuang, H. L., Chen, C. C., Chen, R. A., Liu, P. Y., Chung, C. H., Huang, H. S., Lin, A. Y., Shen, T. D., Yang, K. C., Huang, T. F, Hsu, C. C., Ho, C. T., Kao, H. L., Orekhov, A. N., Wu, M. S. & Sheen, L. Y. (2022). Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and Trimethylamine-N-oxide modulation. NPJ, Biofilms and Microbiomes, 8(1), 4. Park, J. H., Park, Y. K. & Park, E. (2009). Antioxidative and antigenotoxic effects of garlic (Allium sativum L.) prepared by different processing methods. Plant Foods for Human Nutrition, 64, 244˗249. Petropoulos, S. A., Fernandes, Â., Ntatsi, G., Petrotos, K., Barros, L. & Ferreira, I. C. F. R. (2018). Nutritional value, chemical characterization and bulb morphology of Greek garlic landraces. Molecules, 23(2), 319. Qidwai, W. & Ashfaq, T. (2013). Role of garlic usage in cardiovascular disease prevention: an evidence-based approach. Evidence-Based Complementary and Alternative Medicine, 2013, 125˗649. Ried, K. (2020). Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. Experimental and Therapeutic Medicine, 19(2), 1472˗1478. Senani, N., Riba, A. & Moulti-Mati, F. (2018). Inhibition of Aspergillus flavus growth and aflatoxin B1 production by olive mill wastewater. Bioscience Research, 15(1), 369-380. Senani, N., Bedouhene, S. & Houali, K. (2023). Peroxidase activity as a biochemical marker of insecticide use in vegetables. Acta Agriculturae Slovenica, 119(2), 1–9. Shang, A. O., Cao, Sh.-Y., Xu, X.-Y., Gan, R.-Y., Tang, G.-Y., Corke, H., Mavumengwana, V. & Li, H.-B. (2019). Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8(7), 246. Sridhar, A., Ponnuchamy, M., Kumar, P. S. & Kapoor, A. (2021). Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environmental Chemistry Letters, 19, 1715˗1735. Yuan, X., Wang, Z., Liu, L., Mu, D., Wu, J., Li, X. & Wu, X. (2022). Changes of physicochemical properties in black garlic during fermentation. Fermentation, 8(11), 653. |
|
| Date published: 2024-12-16
Download full text