GWAS analysis of milk composition traits in Ayrshire cattle breed
Artem Dysin
, Marina Pozovnikova
, Olga Tulinova
, Yurii Scherbakov
Abstract: This research report presents a comprehensive analysis of the genetic basis of milk composition traits in the Ayrshire cattle breed using genome-wide association studies (GWAS) and single nucleotide polymorphisms (SNPs). Through GWAS analysis, significant SNPs associated with milk composition traits in Ayrshire cattle were identified, many of which were located near genes known to be involved in various biological processes associated with milk production. The study focused on traits such as basic fatty acids, somatic cell count, differential somatic cell counts, lactose, protein, pH, and Solid-Non-Fat Content. The highest number of identified SNPs was associated with somatic cell count in milk and fatty acids. These findings provide valuable insights into the genetic mechanisms underlying milk production and quality in Ayrshire cattle, with the potential to contribute to the development of tools for improving milk production and quality in the dairy industry. The study highlights the importance of understanding the complex genetic mechanisms involved in milk production and quality, specifically in the Ayrshire breed. Further research is warranted to explore the functional roles of the identified genes and their potential applications in breeding programs for enhanced milk production and quality.
Keywords: dairy cows; fatty acids; lactose; milk protein; SNP
Citation: Dysin, A., Pozovnikova, M., Tulinova, O. & Scherbakov, Y. (2024). GWAS analysis of milk composition traits in Ayrshire cattle breed. Bulg. J. Agric. Sci., 30(6), 1090–1096
References: (click to open/close) | Abdoul-Aziz, S. K. A., Zhang, Y., & Wang, J. (2021). Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health. Animals, 11(11), 3210. https://www.mdpi.com/2076-2615/11/11/3210 Anitaş, Ö., & Göncü, S. (2018). Relations between feces, urine, milk and blood fatty acid contents in cattle. MOJ Eco Environ Sci, 3(6), 356-362. Ariyarathne, H., Correa-Luna, M., Blair, H. T., Garrick, D. J., & Lopez-Villalobos, N. (2021). Identification of Genomic Regions Associated with Concentrations of Milk Fat, Protein, Urea and Efficiency of Crude Protein Utilization in Grazing Dairy Cows. Genes (Basel), 12(3). https://doi.org/10.3390/genes12030456 Ateya, A. I., Ibrahim, S. S., & Al-Sharif, M. M. (2022). Single Nucleotide Polymorphisms, Gene Expression and Economic Evaluation of Parameters Associated with Mastitis Susceptibility in European Cattle Breeds. Vet Sci, 9(6). https://doi.org/10.3390/vetsci9060294 Bionaz, M., Vargas-Bello-Pérez, E., & Busato, S. (2020). Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. Journal of Animal Science and Biotechnology, 11(1), 110. https://doi.org/10.1186/s40104-020-00512-8 Buchanan, D. S. (2002). ANIMALS THAT PRODUCE DAIRY FOODS | Major Bos taurus Breeds. In J. W. Fuquay (Ed.), Encyclopedia of Dairy Sciences (Second Edition) (pp. 284-292). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374407-4.00032-7 Buggiotti, L., Yurchenko, A. A., Yudin, N. S., Vander Jagt, C. J., Vorobieva, N. V., Kusliy, M. A., Vasiliev, S. K., Rodionov, A. N., Boronetskaya, O. I., Zinovieva, N. A., Graphodatsky, A. S., Daetwyler, H. D., & Larkin, D. M. (2021). Demographic History, Adaptation, and NRAP Convergent Evolution at Amino Acid Residue 100 in the World Northernmost Cattle from Siberia. Molecular Biology and Evolution, 38(8), 3093-3110. https://doi.org/10.1093/molbev/msab078 Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4(1), s13742-13015-10047-13748. Farschtschi, S., Mattes, M., & Pfaffl, M. W. (2022). Advantages and Challenges of Differential Immune Cell Count Determination in Blood and Milk for Monitoring the Health and Well-Being of Dairy Cows. Veterinary Sciences, 9(6), 255. https://www.mdpi.com/2306-7381/9/6/255 Freebern, E., Santos, D. J. A., Fang, L., Jiang, J., Parker Gaddis, K. L., Liu, G. E., VanRaden, P. M., Maltecca, C., Cole, J. B., & Ma, L. (2020). GWAS and fine-mapping of livability and six disease traits in Holstein cattle. BMC Genomics, 21(1), 41. https://doi.org/10.1186/s12864-020-6461-z Gao, X. (2011). Multiple testing corrections for imputed SNPs. Genetic epidemiology, 35(3), 154-158. Gebreyesus, G., Bovenhuis, H., Lund, M. S., Poulsen, N. A., Sun, D., & Buitenhuis, B. (2019). Reliability of genomic prediction for milk fatty acid composition by using a multi-population reference and incorporating GWAS results. Genetics Selection Evolution, 51(1), 1-14. Gebreyesus, G., Buitenhuis, A., Poulsen, N. A., Visker, M., Zhang, Q., Van Valenberg, H., Sun, D., & Bovenhuis, H. (2019). Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. BMC Genomics, 20, 1-16. Gross, J. J. (2022). Limiting factors for milk production in dairy cows: perspectives from physiology and nutrition. Journal of Animal Science, 100(3). https://doi.org/10.1093/jas/skac044 Gutierrez-Reinoso, M. A., Aponte, P. M., & Garcia-Herreros, M. (2021). Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals (Basel), 11(3). https://doi.org/10.3390/ani11030599 Jayawardana, J. M. D. R., Lopez-Villalobos, N., McNaughton, L. R., & Hickson, R. E. (2023). Genomic Regions Associated with Milk Composition and Fertility Traits in Spring-Calved Dairy Cows in New Zealand. Genes, 14(4), 860. https://www.mdpi.com/2073-4425/14/4/860 Jiang, J., Ma, L., Prakapenka, D., VanRaden, P. M., Cole, J. B., & Da, Y. (2019). A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle [Original Research]. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00412 Kandeel, S., Megahed, A., Ebeid, M., & Constable, P. (2019). Ability of milk pH to predict subclinical mastitis and intramammary infection in quarters from lactating dairy cattle. Journal of Dairy Science, 102(2), 1417-1427. Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.-y., Freimer, N. B., Sabatti, C., & Eskin, E. (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 42(4), 348-354. Koopaee, H. K., & Koshkoiyeh, A. E. (2014). SNPs genotyping technologies and their applications in farm animals breeding programs. Brazilian Archives of Biology and Technology, 57, 87-95. Kretowski, A., Adamska, E., Maliszewska, K., Wawrusiewicz-Kurylonek, N., Citko, A., Goscik, J., Bauer, W., Wilk, J., Golonko, A., & Waszczeniuk, M. (2015). The rs340874 PROX1 type 2 diabetes mellitus risk variant is associated with visceral fat accumulation and alterations in postprandial glucose and lipid metabolism. Genes & nutrition, 10(2), 1-7. Li, N., Richoux, R., Boutinaud, M., Martin, P., & Gagnaire, V. (2014). Role of somatic cells on dairy processes and products: a review. Dairy science & technology, 94(6), 517-538. https://doi.org/10.1007/s13594-014-0176-3 Liu, D., Xu, Z., Zhao, W., Wang, S., Li, T., Zhu, K., Liu, G., Zhao, X., Wang, Q., Pan, Y., & Ma, P. (2022). Genetic parameters and genome-wide association for milk production traits and somatic cell score in different lactation stages of Shanghai Holstein population. Front Genet, 13, 940650. https://doi.org/10.3389/fgene.2022.940650 Liu, Y., Zhu, Z., Xiong, Z., Zheng, J., Hu, Z., & Qiu, J. (2014). Knockdown of protein tyrosine phosphatase receptor U inhibits growth and motility of gastric cancer cells. International journal of clinical and experimental pathology, 7(9), 5750. Mansfield, P. J., Shayman, J. A., & Boxer, L. A. (2000). Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood, The Journal of the American Society of Hematology, 95(7), 2407-2412. Nickerson, S. C. (1995). Milk production: Factors affecting milk composition. In F. Harding (Ed.), Milk Quality (pp. 3-24). Springer US. https://doi.org/10.1007/978-1-4615-2195-2_2 Peñagaricano, F. (2020). Chapter 6 - Genetics and genomics of dairy cattle. In F. W. Bazer, G. C. Lamb, & G. Wu (Eds.), Animal Agriculture (pp. 101-119). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817052-6.00006-9 Peterson, C. B., & Mitloehner, F. M. (2021). Sustainability of the Dairy Industry: Emissions and Mitigation Opportunities [Systematic Review]. Frontiers in Animal Science, 2. https://doi.org/10.3389/fanim.2021.760310 Reville, K., Crean, J. K., Vivers, S., Dransfield, I., & Godson, C. (2006). Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes. The Journal of Immunology, 176(3), 1878-1888. Roesler, M. K., Lombino, F. L., Freitag, S., Schweizer, M., Hermans-Borgmeyer, I., Schwarz, J. R., Kneussel, M., & Wagner, W. (2019). Myosin XVI Regulates Actin Cytoskeleton Dynamics in Dendritic Spines of Purkinje Cells and Affects Presynaptic Organization [Original Research]. Frontiers in Cellular Neuroscience, 13. https://doi.org/10.3389/fncel.2019.00330 Rutsch, F., Gailus, S., Miousse, I. R., Suormala, T., Sagné, C., Toliat, M. R., Nürnberg, G., Wittkampf, T., Buers, I., & Sharifi, A. (2009). Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nature Genetics, 41(2), 234-239. Sakamoto, K., Tamamura, Y., Katsube, K.-i., & Yamaguchi, A. (2008). Zfp64 participates in Notch signaling and regulates differentiation in mesenchymal cells. Journal of Cell Science, 121(10), 1613-1623. https://doi.org/10.1242/jcs.023119 Sanchez, M.-P., Ramayo-Caldas, Y., Wolf, V., Laithier, C., El Jabri, M., Michenet, A., Boussaha, M., Taussat, S., Fritz, S., & Delacroix-Buchet, A. (2019). Sequence-based GWAS, network and pathway analyses reveal genes co-associated with milk cheese-making properties and milk composition in Montbéliarde cows. Genetics Selection Evolution, 51(1), 1-19. Sharif, A., & Muhammad, G. (2008). Somatic cell count as an indicator of udder health status under modern dairy production: A review. Pakistan Veterinary Journal, 28(4), 194-200. Shen, R., Murphy, C. J., Xu, X., Hu, M., Ding, J., & Wu, C. (2022). Ras and Rab interactor 3: From cellular mechanisms to human diseases. Frontiers in cell and developmental biology, 10, 824961. Shen, W., Li, Y., Cao, L., Cai, X., Ge, Y., & Zhu, W. (2018). Decreased Expression of Prox1 Is Associated With Postoperative Recurrence in Crohn’s Disease. Journal of Crohn's and Colitis, 12(10), 1210-1218. https://doi.org/10.1093/ecco-jcc/jjy091 Singh, A., Kumar, A., Gondro, C., Pandey, A. K., Dutt, T., & Mishra, B. P. (2022). Genome Wide Scan to Identify Potential Genomic Regions Associated With Milk Protein and Minerals in Vrindavani Cattle. Front Vet Sci, 9, 760364. https://doi.org/10.3389/fvets.2022.760364 Teng, J., Wang, D., Zhao, C., Zhang, X., Chen, Z., Liu, J., Sun, D., Tang, H., Wang, W., Li, J., Mei, C., Yang, Z., Ning, C., & Zhang, Q. (2023). Longitudinal genome-wide association studies of milk production traits in Holstein cattle using whole-genome sequence data imputed from medium-density chip data. Journal of Dairy Science, 106(4), 2535-2550. https://doi.org/https://doi.org/10.3168/jds.2022-22277 Tiplady, K. M., Lopdell, T. J., Reynolds, E., Sherlock, R. G., Keehan, M., Johnson, T. J., Pryce, J. E., Davis, S. R., Spelman, R. J., & Harris, B. L. (2021). Sequence-based genome-wide association study of individual milk mid-infrared wavenumbers in mixed-breed dairy cattle. Genetics Selection Evolution, 53, 1-24. Truman, L. A., Bentley, K. L., Smith, E. C., Massaro, S. A., Gonzalez, D. G., Haberman, A. M., Hill, M., Jones, D., Min, W., & Krause, D. S. (2012). ProxTom lymphatic vessel reporter mice reveal Prox1 expression in the adrenal medulla, megakaryocytes, and platelets. The American journal of pathology, 180(4), 1715-1725. Tulinova, O., Pozovnikova, M., Sermyagin, A., & Vasilyeva, E. (2021). Inbreed types of Airshire cattle of Russia. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vyssheye professional’noye obrazovaniye= Izvestia of the Lower Volga Agro-University Complex(1), 61. Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv, 005165. Wang, P., Li, X., Zhu, Y., Wei, J., Zhang, C., Kong, Q., Nie, X., Zhang, Q., & Wang, Z. (2022). Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows [Original Research]. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.932034 Wickström, E., Persson-Waller, K., Lindmark-Månsson, H., Östensson, K., & Sternesjö, Å. (2009). Relationship between somatic cell count, polymorphonuclear leucocyte count and quality parameters in bovine bulk tank milk. Journal of Dairy Research, 76(2), 195-201. https://doi.org/10.1017/S0022029909003926 Worku, D., Gowane, G., Alex, R., Joshi, P., & Verma, A. (2022). Inputs for optimizing selection platform for milk production traits of dairy Sahiwal cattle. PLoS One, 17(5), e0267800. https://doi.org/10.1371/journal.pone.0267800 Wu, Z., Zhao, W., Yang, Z., Wang, Y. M., Dai, Y., & Chen, L.-A. (2021). Novel resistance mechanisms to osimertinib analysed by whole-exome sequencing in non-small cell lung cancer. Cancer Management and Research, 2025-2032. Yan, Z., Huang, H., Freebern, E., Santos, D. J. A., Dai, D., Si, J., Ma, C., Cao, J., Guo, G., Liu, G. E., Ma, L., Fang, L., & Zhang, Y. (2020). Integrating RNA-Seq with GWAS reveals novel insights into the molecular mechanism underpinning ketosis in cattle. BMC Genomics, 21(1), 489. https://doi.org/10.1186/s12864-020-06909-z Yang, C., Zeng, X.-H., Zhou, Y., Xia, X.-M., & Lingle, C. J. (2011). LRRC52 (leucine-rich-repeat-containing protein 52), a testis-specific auxiliary subunit of the alkalization-activated Slo3 channel. Proceedings of the National Academy of Sciences, 108(48), 19419-19424. Zamorano-Algandar, R., Medrano, J. F., Thomas, M. G., Enns, R. M., Speidel, S. E., Sánchez-Castro, M. A., Luna-Nevárez, G., Leyva-Corona, J. C., & Luna-Nevárez, P. (2023). Genetic Markers Associated with Milk Production and Thermotolerance in Holstein Dairy Cows Managed in a Heat-Stressed Environment. Biology (Basel), 12(5). https://doi.org/10.3390/biology12050679 Zhou, J., Liu, L., Chen, C. J., Zhang, M., Lu, X., Zhang, Z., Huang, X., & Shi, Y. (2019). Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genomics, 20(1), 827. https://doi.org/10.1186/s12864-019-6224-x |
|
| Date published: 2024-12-16
Download full text