Comparison of yield components and detection of seed size associate locus SW9-1 in elite soybean breeding lines
Katerina Stefanova
, Mariana Radkova
, Galina Naydenova
, Anelia Iantcheva
Abstract: Soybean is one of the main sources of protein for humans and livestock. Soybean seeds are also very rich of oils. Seed size is important parameter in all agricultural crops, and as the main component of yield is the subject of research in breeding programs. In Bulgaria, soybean crop is grown without irrigation, which requires the cultivation of early varieties to allow the flowering and the filling of the seeds to take place before the extreme high temperatures and scarce rainfall during the hottest summer months July and August. For this reason the selection is conducted in both directions - large-seeds and early maturity. Modern selection methods such as marker-assisted selection shorten the time for developing of breeding materials.
In the present study, genotypic diversity related with the seed productivity and the factors determining it, were investigated in F5-F6 soybean breeding lines. The lines were realized after four different crosses including very early cultivar – Romantica; cultivar with high protein content – Saikai and cultivars Srebrina and Galina forming big seeds. The possibilities of the SW9-1 locus carrying SNP related to seed size in soybean to serve as a marker in a selection process was also investigated.
Keywords: Glycine max (L.) Merrill; seed size; SNP; soybean breeding
Citation: Stefanova, K., Radkova, M., Naydenova, G. & Iantcheva, A. (2024). Comparison of yield components and detection of seed size associate locus SW9-1 in elite soybean breeding lines. Bulg. J. Agric. Sci., 30(6), 1050–1058
References: (click to open/close) | Aleksieva, A. (2015). Comparative evaluation of new soybean lines by economic properties. In: Scientific Session of Jubilee 90 years Experimental Station on Soybean, Pavlikeni, Bulgaria, 50-58. Borowska, M. & Prusiński, J. (2021). Effect of soybean cultivars sowing dates on seed yield and its correlation with yield parameters. Plant, Soil and Environment, 67(6), 360-366. Cox, T. S., Kiang, Y. T., Gorman, M. B. & Rodgers, D. M. (1985). Relationship between coefficient of parent¬age and genetic similarity indices in soybean. Crop Sci., 25, 529–532. de los Reyes, A. M., Santos, M. M. L., Ladia, Jr. V. A., Maghirang, R. G., Enicola, E. E. & Ocampo, E. T. M. (2022). Genotype profiling, population structure, and seed size traits association analyses using five polymorphic SSR markers in soybean [Glycine max (L.) Merr.] genotypes available in the Philippines. Sci. Engg. J. (the Official Journal of Philippine-American Academy of Science and Engineering), 166(15), 2. Hao, D. R., Cheng, H., Yin, Z. T., Cui, S. Y., Zhang, D., Wang, H. & Yu, D. Y. (2012). Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor. Appl. Genet., 124, 447–458. Hudcovicova, M. & Kraic, J. (2003). Utilisation of SSRs for Characterisation of the Soybean (Glycine max (L.) Merr.) Genetic Resources. Czech J. Genet. Plant Breed., 39(4), 120–126. Hipparagi, Y., Singh R., Choudhury, D. R. & Gupta, V. (2017). Genetic diversity and population structure analysis of Kala bhat (Glycine max (L.) Merrill) genotypes using SSR markers. Hereditas, 154, 9. DOI 10.1186/s41065-017-0030-8. Keim, P., Beavis, W., Schupp, J. & Freestone, R. (1992). Evalu¬ation of soybean RFLP marker diversity in adapted germ plasm. Theor. Appl. Genet., 85, 205–212. Li, J., Zhao, J., Li, Y., Gao, Y., Hua, S., Nadeem, M., Sun, G., Zhang, W., Hou, J., Wang, X. & Qiu L. (2019). Identification of a novel seed size associated locus SW9-1 in soybean. The Crop Journal, 7, 548-559, doi.org/10.1016/j.cj.2018.12.010. Liu, S., Zhang, M., Feng, F. & Tian, Z. (2020). Toward a “green revolution” for soybean. Molecular Plant, 13(5), 688-697. Mansur, L. M., Orf, J. H. & Lark, K. G. (1993). Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean (Glycine max (L). Merr.), Theor. Appl. Genet., 86, 914–918. Messmer, M. M., Melchinger, A. E., Herrmann, R. G. & Boppermaier, J. (1993). Relationship among early European maize inbreds: II. Comparison of pedigree and RFLP data. Crop Sci., 33, 944–950. Mian, M. A. R., Bailey, M. A., Tamulonis, J. P., Shipe, E. R., Carter, Jr., T. E., Parrott, W. A., Ashley, D. A., Hussey, R. S. & Boerma, H. R. (1996). Molecular markers associated with seed weight in two soybean populations. Theor. Appl. Genet., 93, 1011–1016. Naydenova, G. & Georgieva N. (2019). Study on seed yield components depending on the duration of vegetation period in soybean. Bulg. J. Agric. Sci., 25, 49-54. Radkova, M. & Naydenova, G. (2022). Ecological and genotypic effects on traits harvest index and absolute seed weight in soybean. Rastenievuni Nauki, 59(2), 74-80 (Bg). Shoemaker, R. C., Guffy, R. D., Lorenzen, L. L. & Specht, J. E. (1992). Molecular mapping of soybean: Map utilization. Crop Sci., 32, 1091–1098. Song, Q., Jia, G., Zhu, Y., Grant, D., Nelson, T., Hwang, E. Y., Hyten, D. L. & Cregan, P. B. (2010). Abundance of SSR Motifs and Development of Candidate Polymorphic SSR Markers (BARCSOYSSR_1.0) in Soybean. Genomics, Molecular Genetics & Biotechnology, 50(5), 1950-1960. doi.org/10.2135/cropsci2009.10.0607. Sun, Y. N., Pan, J. B., Shi, X. L., Du, X. Y., Wu, Q., Qi, Z. M., Jiang, H. W., Xin, D. W., Liu, C. Y., Hu, G. H. & Chen, Q. S. (2012). Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol. Biol. Rep., 39, 9435–9443. Wang, X. B., Li, Y. H., Zhang, H. W., Sun, G. L., Zhang, W. M. & Qiu, L. J. (2015). Evolution and аssociation analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Mol. Biol. Rep., 42, 489–496. |
|
| Date published: 2024-12-16
Download full text