Electromagnetic fields in precision agriculture: Do they provoke oxidative stress in maize plants
Margarita Kouzmanova
, Boyana Angelova
, Gabriela Atanasova
, Blagovest Atanasov
, Nikolay Atanasov
, Vasilij Goltsev
, Momchil Paunov
Abstract: Precision agriculture is a strategy for managing agricultural activities by using modern technologies, including communication modules, employing radiofrequency (RF) electromagnetic fields (EMF), to increase the farming efficiency. Many studies have shown that plant species respond to RF EMF. This study aims to investigate the effects of 900 MHz EMF, used in precision agriculture on oxidative stress parameters in young maize plants.
Zea mays plants, variety Knezha-683A, at the developmental stage of second leaf, were exposed for 2 hours to 900 MHz EMF continuous wave, 370 V/m, in a semi-anechoic chamber. Since EMF—matter interaction and absorbed energy depend on the orientation of the object to the field vectors, two experimental setups were arranged, with the electric field vector perpendicular, or parallel to the plant stems. Control plants were transported to the place of irradiation but were not exposed to the EMF. Third group of plants stayed in the growing camera – referent control. Total antioxidant activity (TAA), hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) content in the first and second leaf of the plants were determined one and two hours after the end of the exposure. The presented data were averaged from 3 independent experiments.
The obtained results showed differences in the oxidative status between the first and the second leaf. No statistically significant differences between exposed and control plants in the H2O2, TBARS content or the TAA were found. Under the investigated experimental conditions, 900 MHz, 370 V/m EMF does not induce oxidative stress in young maize plants.
Keywords: 900 MHz electromagnetic field; hydrogen peroxide; TBARS; total antioxidant activity
Citation: Kouzmanova, M., Angelova, B., Atanasova, G., Atanasov, B., Atanasov, N., Goltsev, V. & Paunov, M. (2024). Electromagnetic fields in precision agriculture: do they provoke oxidative stress in maize plants? Bulg. J. Agric. Sci., 30 (Supplement 1), 118–124
References: (click to open/close) | Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24(12), 1337-1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x. Ayala, A., Muñoz, M. & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4‐hydroxy‐2‐nonenal. Oxidative medicine and cellular longevity, 1, 360438. Beaubois, E., Girard, S., Lallechere, S., Davies, E., Paladian, F., Bonnet, P., Ledoigt, G. & Vian, A. (2007) Intercellular communication in plants: evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato. Plant Cell. Environ., 30(7), 834-844. doi:10.1111/j.1365-3040.2007.01669.x. Chandel, S., Kaur, S., Singh, H. P., Batish, D. R. & Kohli, R. K. (2017) Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa roots. J. Microscopy and Ultrastructure, 5, 225–229. http://dx.doi.org/10.1016/j.jmau.2017.09.001. Czerwiński, M., Januszkiewicz, Ł., Vian, A. & Lázaro, A. (2020) The influence of bioactive mobile telephony radiation at the level of a plant community – Possible mechanisms and indicators of the effects. Ecological Indicators 108, 105683. https://doi.org/10.1016/j.ecolind.2019.105683. Czerwiński, M., Vian, A., Woodcock, B. A., Golinski, P., Virto, L. R. & Januszkiewicz, L. (2023) Do electromagnetic fields used in telecommunications affect wild plant species? A control impact study conducted in the field. Ecological Indicators, 150, 1470-160. DOI:10.1016/j.ecolind.2023.110267. Davidova, A. (2019) IoT in agriculture: 5 technologies. Bulgarian farmer. (Bg). https://www.bgfermer.bg/article/8021098. Dimitrova, М., Dragolova, D. & Kouzmanova, M. (2009) Alternation in enzyme activities in leaves after exposure of wheat plants (Triticum aestivum) to 900 MHz electromagnetic fields. Biotechnology, Series F, Special volume, 2nd Int.Symp. “New Researches in Biotechnology”, Bucharest, 309-316. ISSN 1224-7774. Dragolova, D., Dimitrova, M. & Kouzmanova, M. (2009). Does 900 MHz electromagnetic fields induce oxidative stress in wheat plants? Biotechnology, Series F, Special volume, 2nd Int.Symp. “New Researches in Biotechnology”, Bucharest, 317-329. ISSN 1224-7774. Handa, A. P., Vian, A., Singh, H. P., Kohli, R. K., Kaur, S. & Batish, D. R. (2024) Effect of 2850 MHz electromagnetic field radiation on the early growth, antioxidant activity, and secondary metabolite profile of red and green cabbage (Brassica oleracea L.). Environ Sci Pollut Res Int., 31(5), 7465-7480. DOI: 10.1007/s11356-023-31434-3. ICNIRP guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz) (2020), p. 495. https://www.icnirp.org/cms/upload/publications/ICNIRPrfgdl2020.pdf. IoT in Crop Production. Technological development in sensors. (Editorial) (2019) Agro-bio-technika, VII(5) (Bg). https://agrobio.elmedia.net/bg/2019-5/editorials/iot-в-растениевъдството_02077.html. Kaur, S., Vian, A., Chandel, Sh., Singh, H. P., Batish, D. R. & Kohli, R. K. (2021) Sensitivity of plants to high frequency electromagnetic radiation: cellular mechanisms and morphological changes. Rev. Environ. Sci. Biotechnol., 20, 55–74. https://doi.org/10.1007/s11157-020-09563-9. Kouzmanova, M., Dimitrova, M., Dragolova, D., Atanasova, G. & Atanasov, N. (2010), Do GSM900 electromagnetic fields induce stress in pea plants Pisum sativum L.? I. Effects on parameters of oxidative stress, 6th Int. Workshop on Biological Effects of Electromagnetic Fields, Bodrum, Turkey, 10-14 October. Kramer, G. F., Norman, H. A., Krizek, D. T. & Mirecki, R. M. (1991) Influence of UV-B radiation on polyamines, lipid perox-idation and membrane lipids in cucumber. Phytochemistry 30, 2101–2108. https://doi.org/10.1016/0031-9422(91)83595-C. Monselise, E. B., Levkovitz, A., Gottlieb, H. E. & Kost, D. (2011) Bioassay for assessing cell stress in the vicinity of radio-frequency irradiating antennas. J Environ Monit, 13(7), 1890-1896. doi:10.1039/c1em10031a. Panagopoulos, D., Johansson, O. & Carlo, G. (2015). Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity. Sci. Rep., 5, 14914. https://doi.org/10.1038/srep14914. Paunov, M. (2024) Two-way ANOVA in R, Online software repository, https://gitlab.com/experimental-data-analysis/two-way-anova-in-r. Radić, S., Cvjetko, P., Malarić, K., Tkalec, M. & Pevalek-Kozlina, B. (2007). Radio frequency electromagnetic field (900 MHz) induces oxidative damage to DNA and biomembrane in tobacco shoot cells (Nicotiana tabacum). IEEE MTT-S International Microwave Symposium digest. IEEE MTT-S International Microwave Symposium. DOI:10.1109/MWSYM.2007.380400. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med., 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3. Roux, D., Vian, A., Girard, S., Bonnet, P., Paladian, F., Davies, E. & Ledoigt, G. (2008) High frequency (900 MHz) low amplitude (5 V m-1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta, 227, 883–891. DOI:10.1007/s00425-007-0664-2. Sharma, V. P., Singh, H. P., Kohli, R. K. & Batish, D. R. (2009) Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci. Total. Environ., 407, 5543–5547. https://doi.org/10.1016/j.scitotenv.2009.07.006. Sharma, V. P., Singh, H. P., Batish, D. R. & Kohli, R. K. (2010) Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations, Z. Naturforsch. C., 65(1-2), 66–72. DOI: 10.1515/znc-2010-1-212. Tkalec, M., Malarić, K. & Pevalek-Kozlina, B. (2007) Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L., Sci. Total. Environ., 388(1-3), 78-89. https://doi.org/10.1016/j.scitotenv.2007.07.052. Tran, N. T., Jokic, L., Keller, J., Geier, J. U. & Kaldenhoff, R. (2023) Impacts of Radio-Frequency Electromagnetic Field (RF-EMF) on Lettuce (Lactuca sativa)—Evidence for RF-EMF Interference with Plant Stress Responses. Plants, 12, 1082. https://doi.org/10.3390/plants12051082. Vanegas-Acosta, J. C. (2015). Electric fields and biological cells: numerical insight into possible interaction mechanisms. [PhD Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. Velikova, V., Yordanov, I. & Edreva, A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151, 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1. Vian, А., Davies, E., Gendraud, M. & Bonnet, P. (2016) Plant Responses to High Frequency Electromagnetic Fields. BioMed Research International Special Vol. Stress Signaling Responses in Plants, Article ID: 1830262, 13. http://dx.doi.org/10.1155/2016/1830262. Winterbourn, C. (2013) Chapter One – The Biological Chemistry of Hydrogen Peroxide. Methods in Enzymology; Cadenas, E. & Packer, L., Eds, 3-25. Zare, H. & Mohsenzadeh, S. (2015) The Effect of Electromagnetic Waves on Photosynthetic Pigments and Antioxidant Enzyme in Zea mays L. Special Issue of Curr. World Environ., 10. http://dx.doi.org/10.12944/CWE.10.Special-Issue1.88. |
|
| Date published: 2024-12-13
Download full text