New synthesized nanoparticles (Fe2O3 1A, ZnO G18 and ZnFeO) - influence on Daphnia magna (Straus, 1820)
Elena Nenova
, Lilia Yordanova
, Iliana Ivanova
Abstract: Daphnia magna (Straus, 1820), a small species of water fleas with a short life cycle and high sensitivity to water pollution, is model used as a keystone species in eco-toxicological experiments in freshwater ecosystems to assess the biological effect of new synthesized nanoparticles on the environment.
Preliminary studies were conducted with Daphnia magna (Crustacea, Cladocera) and three types of nanoparticles: Fe2O3-1A, ZnO-G18 and ZnFeO. The preliminary results showed high toxicity and mortality in daphnia treated with Fe2O3 1A and ZnO-G18 and low toxicity and mortality of daphnia treated with ZnFeO nanoparticles. The ferrite nanoparticles (Fe2O3-1A) obtained by physical means were toxic to D. magna at concentrations of 0.5 mg L-1. For ZnO-G18 a concentration of 0. 5 mg L-1 killed 90% of daphnia at 48 h and a concentration of 0.05 mg L-1 it killed 70% of daphnia. The treatment with ZnFeO nanoparticles demonstrated a weaker effect on daphnia. Survival was 100% at a concentration of 0.02 mg L-1 and 90% at a concentration of 0.2 mg L-1.
Keywords: ecotoxicology; nanoparticles; water crustaceans
Citation: Nenova, E., Yordanova, L. & Ivanova, I. (2024). New synthesized nanoparticles (Fe2O3 1A, ZnO – G18 and Zn-FeO) – influence on Daphnia magna (Straus, 1820). Bulg. J. Agric. Sci., 30 (Supplement 1), 107–111
References: (click to open/close) | Adam, N., Vergauwen L., Blust, R. & Knapen, D. (2015). Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. Environ. Res., 138, 82-92. Alhadlaq, H. A., Akhtar, M. J. & Ahamed, M. (2015). Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in different human cells. Cell & Bioscience, 55(5), 2045-3701. Bacchetta, R., Maran, B., Marelli, M., Santo, N. & Tremolada, P. (2016). Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach. Environmental research, 148, 376-385. Bai,W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y. & Chai, Z. (2010). Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nanopart. Res., 12, 1645-1654. Baumann, J., Köser, J., Arndt, D. & Filser, J. (2014). The coating makes the difference: Acute effects of iron oxide nanoparticles on Daphnia magna. Science of the Total Environment, 484, 176-184. Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M. & Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut., 158, 41-47. Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M. & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol., 87, 1181-1200. Bordin, E. R., Ramsdorf, W. A., Domingos, L. M. L., de Souza Miranda, L. P., Mattoso Filho, N. P. & Cestari, M. M. (2024). Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends. Journal of Environmental Management, 349, 119396. Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., ... & Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environmental science & technology, 40(14), 4374-4381. Elder, A., Vidyasagar, S. & De Louise L. (2009). Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wires Nanomed. Nanobio., 1, 434-450. Foca-nici, E., Capraru, G. & Creanga, D. (2010). Comparative Cytogenetic Study on the Toxicity of Magnetite and Zinc Ferrite Nanoparticles in Sunflower Root Cells. AIP Conf. Proc., 1311(1), 345–350. Gökçe, D., Köytepe, S. & Özcan, İ. (2020). Assessing short-term effects of magnetite ferrite nanoparticles on Daphnia magna. Environ Sci Pollut Res Int., 27(25), 31489-31504. Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E. & De Simone, J. M. (2008). The effect of particle design on cellular internalization pathways. P. Natl. Acad. Sci., USA, 105, 11613-11618. Griffitt, R. J., Hyndman, K., Denslow, N. D. & Barber, D. S. (2009). Comparison of molecular and histological changes in zebrafish Gills exposed to metallic nanoparticles. Toxicol. Sci., 107, 404-415. Gupta, A. K. & Gupta, M. (2005). Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 26(13), 1565-1573. Hao, L., Chen, L., Hao, J. & Zhong, N. (2013). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol. Environ. Saf., 91, 52-60. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C. & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Tamnocephalus platyurus. Chemosphere, 71(7), 1308-1316. Hu, J., Wang, D., Wang, J. & Wang, J. (2012). Bioaccumulation of Fe2O3 (magnetic) nanoparticles in Ceriodaphnia dubia. Environ Pollut., 162, 216-222. Klingshirn, C. (2007). ZnO: From basics towards applications. Physica status solidi (b), 244(9), 3027-3073. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 108(6), 2064-2110. Limbach, L. K., Wick, P., Manser, P., Grass, R. N., Bruinink, A. & Stark, W. J. (2007). Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environmental science & technology, 41(11), 4158-4163. Magro, M., De Liguoro, M., Franzago, E., Baratella, D. & Vianello, F. (2018). The Surface Reactivity of Iron Oxide Nanoparticles as a Potential Hazard for Aquatic Environments: A Study on Daphnia magna Adults and Embryos. Sci. Rep., 8, 13017. Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics, 36(13), R167. Poynton, H. C., Lazorchak, J. M., Impellitteri, C. A., Smith, M. E., Rogers, K., Patra, M., ... & Vulpe, C. D. (2011). Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environmental science & technology, 45(2), 762-768. Santo, N., Fascio, U., Torres, F., Guazzoni, N., Tremolada, P., Bettinetti, R., Mantecca, P. & Bacchetta, R. (2014). Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: Does size matter? Water research, 53, 339-350. Santos-Rasera, J. R., Monteiro, R. T. R. & de Carvalho, H. W. P. (2022). Investigation of acute toxicity, accumulation, and depuration of ZnO nanoparticles in Daphnia magna. Science of The Total Environment, 821, 153307. Senthamarai, M. D. & Malaikozhundan, B. (2022). Synergistic action of zinc oxide nanoparticle using the unripe fruit extract of Aegle marmelos (L.) - antibacterial, antibiofilm, radical scavenging and ecotoxicological effects. Mater. Today Commun., 30, 103228. Zarria-Romero, J. Y. & Ramos-Guivar, J. A. (2024). Cytotoxicity and Genotoxicity Effects of a Magnetic Zeolite Composite in Daphnia magna (Straus, 1820). Int. J. Mol. Sci., 25(14), 7542. |
|
| Date published: 2024-12-13
Download full text