Armstrong, A., Waldron, S., Whitaker, J., and Ostle, N. J. (2014). Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate. Glob. Chang. Biol. 20, 1699–1706. doi: 10.1111/gcb.12437. Armstrong, A., Ostle, N. J. & Whitaker, J. (2016). Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett., 11, 074016. doi: 10.1088/1748-9326/11/7/074016. Azam, W., Khan, I. & Ali, S. A. (2023). Alternative energy and natural resources in determining environmental sustainability: A look at the role of government final consumption expenditures in France. Environ. Sci. Pollut. Res., 30, 1949–1965. Barron-Gafford, G. A., Pavao-Zuckerman, M. A., Minor, R. L., Sutter, L. F., Barnett-Moreno, I., Blackett, D. T., Thompson, M., Dimond, K., Gerlak, A. K., Nabhan, G. P. & Macknick, J. E. (2019). Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. TIME ET AL. 9 Nature Sustainability, 2, 848–855. https://doi.org/10.1038/s41893- 019-0364-5. Bogdanov, D., Gulagi, A., Fasihi, M. & Breyer, C. (2021). Full energy sector transition towards 100% renewable energy supply: integrating power, heat, transport and industry sectors including desalination. Appl. Energy, 283, 116273. doi: 10.1016/j. apenergy.2020.116273. Chang, Z. F., Liu, S. Z., Zhu, S. J., Han, F. G., Zhong, S. N. & Duan, X. F. (2016). Ecological functions of PV power plants in the desert and Gobi. J. Resour. Ecol., 7, 130–136. doi: 10.5814/j.issn.1674-764x.2016.02.008. Choi, C. S., Cagle, A. E., Macknick, J., Macknick, J., Bloom, D. E. & Caplan, J. S. (2020). Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Front. Environ. Sci., 8, 140. doi: 10.3389/fenvs.2020.00140. De Marcoa, A., Petrosillo, I., Semeraro, T., Pasimeni, M. R., Aretano, R. & Zurlini, G. (2014). The contribution of utility-scale solar energy to the global climate regulation and its effects on local ecosystem services. Glob. Ecol. Conserv., 2, 324–337. doi: 10.1016/j.gecco.2014.10.010. Dunnett, S., Sorichetta, A., Taylor, G. & Eigenbrod, F. (2020). Harmonised global datasets of wind and solar farm locations and power. Sci. Data, 7, 130. doi: 10.1038/ s41597-020-0469-8. Hong, J. & Kim, J. (2008). Simulation of surface radiation balance on the Tibetan plateau. Geophys. Res. Lett., 35, L08814. doi: 10.1029/2008GL033613. Lambert, Q., Gros, R. & Bischoff, A. (2022). Ecological restoration of solar park plant communities and the effect of solar panels. Ecol. Eng., 182, 106722. doi: 10.1016/j. ecoleng.2022.106722. Liu, Y., Zhang, R. Q., Huang, Z., Cheng, Z., López‐Vicente, M., Ma, X. R. & Wu, G. L. (2019). Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in arid sandy ecosystem. Land Degrad. Dev., 30, 2177–2186. doi: 10.1002/ldr.3408. Lu, X. (2013). The environment effect analysis of PV power plant construction in desert Gobi Lanzhou University. Maamoun, N., Kennedy, R., Jin, X. M. & Urpelainen, J. (2020) Identifying coal-fred power plants for early retirement. Renew Sustain. Energy Rev., 126, 109833. https://doi.org/10.1016/j.rser.2020. 109833. Miyamoto, M. & Takeuchi, K. (2019). Climate agreement and technology diffusion: Impact of the Kyoto Protocol on international patent applications for renewable energy technologies. Energy Policy, 129, 1331–1338. Morcillo, J., Castaneda, M., Jímenez, M., Zapata, S., Dyner, I. & Aristizabal, A. J. (2022). Assessing the speed, extent, and impact of the diffusion of solar PV. Energy Rep., 8, 269–281. Rahman, A., Farrok, O. & Haque, M. M. (2022) Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew Sustain. Energy Rev., 161, 112279. https://doi. org/10.1016/j.rser.2022.112279. Turney, D. & Fthenakis, V. (2011). Environmental impacts from the installation and operation of large-scale solar power plants. Renew Sust. Energ. Rev., 15, 3261–3270. doi: 10.1016/j.rser.2011.04.023. Weinstock, D. & Appelbaum, J. (2009). Optimization of solar photovoltaic fields. J. Sol. Energy. Eng., 131, 031003. doi: 10.1115/1.3142705. Wilberforce, T., Baroutaji, A., El Hassan, Z., Thompson, J., Soudan, B. & Olabi, A. G. (2019). Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies. Sci. Total Environ., 659, 851–861. doi: 10.1016/j. scitotenv.2018.12.257. Yin, D.Y., Ma, L., Qu, J. J., Zhao, S. P., Yu, Y., Tan, L. & Xiao, J. H. (2017). Effect of large photovoltaic power station on microclimate of desert region in Gonghe basin. Bull. Soil Water Conserv., 37, 15–21. doi: 10.13961/j.cnki.stbctb.2017.03.003. Zhai, B., Dang, X. H., Chen, X., Liu, X. J. & Yang, S. R. (2020). Difference regularity of precipitation redistribution and soil water evapotranspiration in photovoltaic panels in typical steppe areas of Inner Mongolia. J. Chin. Agric. Univ., 25, 144–155. doi: 10.11841/j.issn.1007-4333.2020.09.15. Zhang, Yo., Tian, Zh., Liu, B., Chen, Sh. & Wu, J. (2023). Effects of photovoltaic power station construction on terrestrial ecosystems: A meta-analysis. Ecology and Evolution, 11, 01–07. DOI: 10.3389/fevo.2023.1151182. Zhao, P. Y. (2016). Effects of photovoltaic panels on surface soil particles and microclimate Inner Mongolia Agricultural University Available at: https://kns.cnki.net/ KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1016249431.nh. |
|