Early warning signals of drought induced oxidative stress and genotype tolerance. A review
Stephka Chankova
, Petya Parvanova
, Nadezhda Yurina
Abstract: Drought was shown to cause harm to plants - reducing growth, physiological activity, reproduction, and productivity. In an agricultural aspect, "drought" means not having sufficient soil moisture required by plants to maintain their normal growth and development throughout the life cycle. Drought is known as the most common environmental stress affecting plants through induced oxidative stress. Being sessile organisms, plants have developed various strategies to cope with water scarcity – escape, avoidance, and tolerance. In this review, we discuss the drought as an environmental factor, oxidative stress induced by drought, and some commonly used endpoints such as MDA and H2O2 for the evaluation of the magnitude of drought stress as well as the contribution of both Proline and HSP70/chaperone involved in the formation of plants tolerance to drought-induced stress. Based on the available data in the literature and our own results, it was shown that both biochemical endpoints MDA and H2O2 could play a dual role - as indicators of the magnitude of drought-induced stress, as well as markers of tolerance to drought. The great contribution of Pro and HSP70 for the formation of increased drought tolerance in plants was analyzed. The dynamics of cytoplasmic HSP70 chaperone levels in bean lines with different resistance to water deficiency revealed that HSP70 family proteins are one of the main components of plant stress tolerance. It could be said that these simple and not expensive endpoints could be successfully applied as early warning signals for revealing drought-induced stress and plants tolerance.
Keywords: drought; H2O2; HSP70; MDA; plants; Proline
Citation: Chankova, S., Parvanova, P. & Yurina, N. (2024). Early warning signals of drought induced oxidative stress and genotype tolerance. A review. Bulg. J. Agric. Sci., 30 (Supplement 1), 75–82
References: (click to open/close) | Aina, O., Bakare, O. O., Fadaka, A. O., Keyster, M. & Klein, A. (2024). Plant biomarkers as early detection tools in stress management in food crops: a review. Plants, 259(3), 60. https://doi.org/10.1007/s00425-024-04333-1 Angelova, T., Parvanova, P., Miteva, D. & Chankova, S. (2017). Set of Reliable Markers for the Evaluation of Drought Induced Stress in Phaseolus vulgaris L. Genotypes. Comptes rendus de l’Académie bulgare des Sciences, 70(10), 1411-1420 (C. R. Acad. Bulg. Sci.). Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M. & Vicente, O. (2020). The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy, 10(6), 817. doi:10.3390/agronomy10060817. Augustine, S. M., Cherian, A. V., Syamaladevi, D. P. & Subramonian, N. (2015). Erianthus arundinaceus HSP70 (EaHSP70) acts as a key regulator in the formation of anisotropic interdigitation in sugarcane (Saccharum spp. hybrid) in response to drought stress. Plant and Cell Physiology, 56(12), 2368-2380. https://doi.org/10.1093/pcp/pcv142. Chankova, S., Mitrovska, Z., Miteva, D., Oleskina, Y. P. & Yurina, N. P. (2013). Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats. Gene, 516(1), 184-189. http: dx.doi.org/10.1016/j.gene.2012.11.052. Chankova, S. G., Dimova, E. G., Mitrovska, Z., Miteva, D., Mokerova, D. V., Yonova, P. A. & Yurina, N. P. (2014). Antioxidant and HSP70B responses in Chlamydomonas reinhardtii genotypes with different resistance to oxidative stress. Ecotoxicology and environmental safety, 101, 131-137. https://doi.org/10.1016/j.ecoenv.2013.11.015. Cho, E. K. & Hong, C. B. (2006). Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant cell reports, 25, 349-358. doi.org/10.1007/s00299-005-0093-2. Davoudi, M., Chen, J. & Lou, Q. (2022). Genome-wide identification and expression analysis of heat shock protein 70 (HSP70) gene family in pumpkin (Cucurbita moschata) root-stock under drought stress suggested the potential role of these chaperones in stress tolerance. International Journal of Molecular Sciences, 23(3), 1918. Devarajan, A. K., Muthukrishanan, G., Truu, J., Truu, M., Ostonen, I., Kizhaeral, S. S., Panneerselvam, P. & Kuttalingam, G. S. (2021). The foliar application of rice phyllosphere bacteria induces drought-stress tolerance in Oryza sativa (L.). Plants, 10(2), 387. Doi: 10.3390/plants10020387. Dumanović, J., Nepovimova, E., Natić, M., Kuča, K. & Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in plant science, 11, 552969. https://doi.org/10.3389/fpls.2020.552969. Ferioun, M., Srhiouar, N., Bouhraoua, S., El Ghachtouli, N. & Louahlia, S. (2023). Physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon, 9(2). Furlan, A. L., Bianucci, E., Giordano, W., Castro, S. & Becker, D. F. (2020). Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiology and Biochemistry, 151, 566-578. Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016. Gurrieri, L., Merico, M., Trost, P., Forlani, G. & Sparla, F. (2020). Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology, 9(11), 367. doi:10.3390/biology9110367. Hossain, M. S., Li, J., Wang, C., Monshi, F. I., Tabassum, R., Islam, M. A., Faruquee, M., Muktadir, M. A., Mia, M. S., Islam, A. K. M. M., Hasan, A. K., Sikdar, A. & Feng, B. (2024). Enhanced Antioxidant Activity and Secondary Metabolite Production in Tartary Buckwheat under Polyethylene Glycol (PEG)-Induced Drought Stress during Germination. Agronomy, 14(3), 619. https://doi.org/10.3390/ agronomy14030619. Hu, W., Hu, G. & Han, B. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 176(4), 583-590. https://doi.org/10.1016/j.plantsci.2009.01.016. Impa, S. M., Nadaradjan, S. & Jagadish, S. V. K. (2012). Drought stress induced reactive oxygen species and anti-oxidants in plants. In: Abiotic stress responses in plants: metabolism, productivity and sustainability, (Ahmad P., Prasad M. eds). Springer, New York, NY, 131-147. Khatun, M., Sarkar, S., Era, F. M., Islam, A. M., Anwar, M. P., Fahad, S., Datta, R. & Islam, A. A. (2021). Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy, 11(12), 2374. http://doi.org/10.3390/ agronomy11122374. Khodabin, G., Tahmasebi‐Sarvestani, Z., Rad, A. H. S. & Modarres‐Sanavy, S. A. M. (2020). Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chemistry & biodiversity, 17(2), e1900399. https://doi.org/10.1002/cbdv.201900399. Kim, T., Samraj, S., Jiménez, J., Gómez, C., Liu, T. & Begcy, K. (2021). Genome-wide identification of heat shock factors and heat shock proteins in response to UV and high intensity light stress in lettuce. BMC Plant Biology, 21, 1-20. doi: 10.1186/s12870-021-02959-x. Kirova, E., Pecheva, D. & Simova-Stoilova, L. (2021). Drought response in winter wheat: Protection from oxidative stress and mutagenesis effect. Acta Physiologiae Plantarum, 43(1), 8. https://doi.org/10.1007/s11738-020-03182-1. Lee, B. R., La, V. H., Park, S. H., Mamun, M. A., Bae, D. W. & Kim, T. H. (2022). H2O2-responsive hormonal status involves oxidative burst signaling and proline metabolism in Rapeseed leaves. Antioxidants, 11(3), 566. https://doi.org/10.3390/ antiox11030566. Li, G., Wei, J., Li, C., Fu, K., Li, C. & Li, C. (2024). Amino acid metabolism response to post-anthesis drought stress during critical periods of elite wheat (Triticum aestivum L.) endosperm development. Environmental and Experimental Botany, 218, 105577. Lin, S., Zhang, W., Wang, G., Hu, Y., Zhong, X. & Tang, G. (2024). Physiological Regulation of Photosynthetic-Related Indices, Antioxidant Defense, and Proline Anabolism on Drought Tolerance of Wild Soybean (Glycine soja L.). Plants, 13(6), 880. https://doi.org/10.3390/plants13060880. Mafakheri, A., Siosemardeh, A. F., Bahramnejad, B., Struik, P. C. & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of crop science, 4(8), 580-585. https://search.informit.org/doi/10.3316/informit.857341254680658. Masand, S. & Yadav, S. K. (2016). Over-expression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Molecular biology reports, 43, 53-64. doi 10.1007/s11033-015-3938-y. Melandri, G., AbdElgawad, H., Riewe, D., Hageman, J. A., Asard, H., Beemster, G. T., Kadam, N., Jagadish, K., Altmann, T., Ruyter-Spira, C. & Bouwmeester, H. (2020). Biomarkers for grain yield stability in rice under drought stress. Journal of Experimental Botany, 71(2), 669-683. https://doi.org/10.1093/jxb/erz221. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. Mondal, S., Karmakar, S., Panda, D., Pramanik, K., Bose, B. & Singhal, R. K. (2023). Crucial plant processes under heat stress and tolerance through heat shock proteins. Plant Stress, 10, 100227. https://doi.org/10.1016/j.stress.2023.100227. Muhammad, A. A., Jiang, H. K., Shui, Z. W., Cao, X. Y., Huang, X. Y., Imran, S., Ahmad, B., Zhang, H., Yang, Y. N., Shang, J., Yang, H., Yu, L., Liu, C. Y., Yang, W. Y., Sun, X. & Du, J. B. (2021). Interactive effect of shade and PEG-induced osmotic stress on physiological responses of soybean seedlings. Journal of Integrative Agriculture, 20(9), 2382-2394. https://doi.org/10.1016/S2095-3119(20)63383-4. Pulido, P., Llamas, E. & Rodriguez-Concepcion, M. (2017). Both Hsp70 chaperone and Clp protease plastidial systems are required for protection against oxidative stress. Plant signaling & behavior, 12(3), e1290039. doi 10.1080/15592324.2017.1290039. Rahim, D., Kalousek, P., Tahir, N., Vyhnánek, T., Tarkowski, P., Trojan, V., Abdulkhaleq, D., Ameen, A. H. & Havel, L. (2020). In vitro assessment of kurdish rice genotypes in response to PEG-induced drought stress. Applied Sciences, 10(13), 4471. doi:10.3390/app10134471. Rahman, M. A., Woo, J. H., Song, Y., Lee, S. H., Hasan, M. M., Azad, M. A. K. & Lee, K. W. (2022). Heat shock proteins and antioxidant genes involved in heat combined with drought stress responses in perennial rye grass. Life, 12(9), 1426. https://doi.org/10.3390/life12091426 Rao, D. S., Raghavendra, M., Gill, P., Madan, S. & Munjal, R. (2020). Studies on role of proline, hydrogen peroxide and total antioxidant activity in wheat (Triticum aestivum L.) under drought stress after anthesis. International Journal of Chemical Studies, 8(6), 738-742. https://doi.org/10.22271/chemi.2020.v8.i6k.10856. Singh, R. K., Jaishankar, J., Muthamilarasan, M., Shweta, S., Dangi, A. & Prasad, M. (2016). Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Scientific reports, 6(1), 32641. https://doi.org/10.1038/srep32641. Slesak, I., Libik, M., Karpinska, B., Karpinski, S. & Miszalski, Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta biochimica polonica, 54(1), 39-50. https://doi.org/10.3390/life12091426. Song, A., Zhu, X., Chen, F., Gao, H., Jiang, J. & Chen, S. (2014). A chrysanthemum heat shock protein confers tolerance to abiotic stress. International journal of molecular sciences, 15(3), 5063-5078. doi.org/10.3390/ijms15035063. Subramani, M., Urrea, C. A., Tamatamu, S. R., Sripathi, V. R., Williams, K., Chintapenta, L. K., Todd, A. & Ozbay, G. (2024). Comprehensive proteomic analysis of common bean (Phaseolus vulgaris L.) seeds reveal shared and unique proteins involved in terminal drought stress response in tolerant and sensitive genotypes. Biomolecules, 14(1), 109. https:// doi.org/10.3390/biom14010109. Svetleva, D., Krastev, V., Dimova, D., Mitrovska, Z., Miteva, D., Parvanova, P. & Chankova, S. (2012). Drought tolerance of Bulgarian common bean genotypes, characterized by some biochemical markers for oxidative stress. Journal of Central European Agriculture, 13(2), 349-361. DOI: 10.5513/JCEA01/13.2.1059. Swindell, W. R., Huebner, M. & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC genomics, 8, 125. doi:10.1186/1471-2164-8-125. Urmi, T. A., Islam, M. M., Zumur, K. N., Abedin, M. A., Haque, M. M., Siddiqui, M. H., Murata, Y. & Hoque, M. A. (2023). Combined effect of salicylic acid and proline mitigates drought stress in rice (Oryza sativa L.) through the modulation of physiological attributes and antioxidant enzymes. Antioxidants, 12(7), 1438. https://doi.org/ 10.3390/antiox12071438. Verbruggen, N. & Hermans, C. (2008). Proline accumulation in plants: a review. Amino acids, 35, 753-759. https://doi.org/10.1007/s00726-008-0061-6. Vranová, E., Inzé, D. & Van Breusegem, F. (2002). Signal transduction during oxidative stress. Journal of experimental botany, 53(372), 1227-1236. https://doi.org/10.1093/jexbot/53.372.1227. Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant and cell physiology, 38(10), 1095-1102. https://doi.org/10.1093/oxfordjournals.pcp.a029093. Zhang, L., Zhao, H. K., Dong, Q. L., Zhang, Y. Y., Wang, Y. M., Li, H. Y., Xing, G. J., Li, Q. Y. & Dong, Y. S. (2015). Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). Frontiers in plant science, 6, 773. https://doi.org/10.3389/fpls.2015.00773. Zlatev, Z., Berova, M., Krastev, V., Svetleva, D., Parvanova, P., Miteva, D., Mitrovska, Z. & Chankova, S. (2020). Drought tolerance of Bulgarian common bean genotypes, characterized by some physiological and biochemical parameters. Agricultural Sciences/Agrarni Nauki, 12(27). DOI: 10.22620/agrisci.2020.27.003. |
|
| Date published: 2024-12-13
Download full text