Biological functions of Paenibacillus spp. for agriculture applications
Mariana Mohammad, Noor Afiza Badaluddin
, Eeyad Arief Asri
Abstract: Due to their known mechanisms for biological control and plant growth promotion, Paenibacillus spp. are widely used in agriculture. However, the use of this microbial inoculant in Paenibacillus-based products and its potential benefits have received little attention. We describe the efficacy of Paenibacillus spp. in relation to crop development,biological control and bioremediation based on a study of researchers from around the world. In addition, this article addresses how Paenibacillus spp. produces beneficial metabolites. Agriculture will benefit from the implementation of these unexpected results if ecologically sound cultivation methods are used.
Keywords: biological control agents; bioremediation; enzyme degradation; Paenibacillus spp.; plant growth promoter
Citation: Mohammad, M., Badaluddin, N. A. & Asri, E. A. (2024). Biological functions of Paenibacillus spp. for agriculture applications. Bulg. J. Agri. Sci., 30(5), 930–947
References: (click to open/close) | Abdallah, Y., Yang, M., Zhang, M., Masum, Md. M.I., Ogunyemi, S.O., Hossain, A., An, Q., Yan, C. & Li, B. (2019). Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Lett. Appl. Microbiol., 68(5), 423–429. Akram, W., Anjum, T., & Ali, B. (2016). Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against fusarium wilt. Front. Plant Sci., 7. Al-Askar, A. A., Rashad, Y. M., Hafez, E. E., Abdulkhair, W. M., Baka, Z. A. & Ghoneem, K. M. (2015). Characterization of alkaline protease produced by Streptomyces griseorubens E44G and its possibility for controlling rhizoctonia root rot disease of corn. Biotechnol. Biotechnol. Equip., 29(3), 457–462. AL-Saleh, E. & Obuekwe, C. (2014). Crude oil biodegradation activity in potable water, Int. Biodeterior. Biodegradation, 93, 18–24. Anand, R., Grayston, S. & Chanway, C. (2013). N2-Fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb. Ecol., 66(2), 369–374. Arora, N. K. & Mishra, J. (2016). Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl. Soil Ecol., 107, 405–407. Ash, C., Priest, F. G. & Collins, M. D. (1993). Molecular identification of rRNA group 3 bacilli (ash, farrow, wallbanks, and collins) using a PCR probe test – proposal for creating a new genus Paenibacillus. Journal of Microbiology, Antonie van Leeuwenhoek, 64(3–4), 253–260. Badaluddin, N. A., Yin, S. Y., Umar, R., Sabri, N. H., Hasshim, N. S., Ali, M. K., & Rashad, M. A. (2020). Isolation and characterization of high ambient electromagnetic radiation (EMR) bacteria. MAB, 49(4), 165–172. Bashan, Y., de-Bashan, L. E., Prabhu, S. R. & Hernandez, J. (2013). Advances in plant growth-promoting bacterial inoculants technology: Formulations and practical perspectives. Plant and Soil, 378, 1–33. Bazioli, M. J., Belinato, J. R., Costa, J. H., Akiyama, D. Y., Pontes, J. G. de M., Kupper, K. C., Augusto, F., de Carvalho, J. E., & Fill, T. P. (2019). Biological control of citrus postharvest phytopathogens. Toxins, 11(8), 460. Behnsen, J. & Raffatellu, M. (2016). Siderophores: more than stealing iron. MBio, 7(6), e01906-16. Bhattacharyya, P. N. & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. and Biotechnol., 28, 1327–1350. Breedt, G., Labuschagne, N. & Coutinho, T. A. (2017). Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Ann. Appl. Biol., 171(2), 229–236. Brito, E. M., De la Cruz Barrón, M., Caretta, C. A., Goňi-Urriza, M., Andrade, L. H., Cuevas-Rodrigez, G., Malm, O., Torres, J. P. M., Simon, M. & Guyoneaud, R. (2015). Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential. Sci. Total Environ., 521, 1–10. Chen, C., Wan, C., Guo, J. & Chen, J. (2020). Paenibacillus brasilensis YS-1: A potential biocontrol agent to retard xinyu tangerine senescence. Agriculture, 10(8), 330. Chow, V., Nong, G., St. John, F. J., Rice, J. D., Dickstein, E., Chertkov, O., Bruce, D., Detter, C., Brettin, T., Han, J., Woyke, T., Pitluck, S., Nolan, M., Pati, A., Martin, J., Copeland, A., Land, M. L., Goodwin, L., Jones, J. B. & Preston, J. F. (2012). Complete genome sequence of Paenibacillus sp. strain JDR-2. Stand. Genom. Sci., 6(1), 1–10. Cochrane, S., Li, X., He, S., Yu, M., Wu, M. & Vederas, J. (2015). Synthesis of tridecaptin-antibiotic conjugates with in vivo activity against Gram-negative bacteria. J. Med. Chem., 58(24), 9779–9785. Dal-Cortivo, C., Ferrari, M., Visioli, G., Lauro, M., Fornasier, F., Barion, G., Panozzo, A. & Vamerali, T. (2020). Effects of seed-applied biofertilizers on rhizosphere biodiversity and growth of common wheat (Triticum aestivum L.) in the field. Front. Plant Sci.,11, 72. De Franca, I. W. L., Lima, A. P., Lemos, J. A. M., Lemos, C. G. F., MacielMelo, V. M., de Santana, H. B. & Goncalves, L. R. B. (2015). Production of biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal. Today, 255, 10–15. Didwania, N. (2019). Diseases of cumin and their management. In: Diseases of Medicinal and Aromatic Plants and Their Management. Eds: Rakesh Pandey, A.K. Misra, H.B. Singh, Alok Kalra and Dinesh Singh, Indian Phytopathol., 339–352. Du, N., Shi, L., Yuan, Y., Sun, J., Shu, S. & Guo, S. (2017). Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Microbiol. Res., 202, 1–10. Dubois, M., Van den Broeck, L. & Inze, D. (2018). The pivotal role of ethylene in plant growth. Trends in Plant Sci., 23(4), 311–323. Elad, Yigal & Kapat, A. (1999). The Role of Trichoderma harzianum Protease in the Biocontrol of Botrytis cinerea. Eur. J. Plant Pathol., 105, 177-189. Fernando, W. G. D. & Linderman, R. G. (1997). The effects of the mycorrhizal (Glomus intraradices) colonization on the development of root and stem rot (Phytophthora vignae) of cowpea. J. Nat. Sci. Foundation of Sri Lanka, 25(1), 39-47. Ferreira, C. M. H., Soares, H. M. V. M. & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Sci. Total Environ., 682, 779–799. Fira, D., Dimkić, I., Berić, T., Lozo, J. & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. J. Biotechnol., 285, 44-55. Gallegos-Cedillo, V. M., Urrestarazu, M. & Álvaro, J. E. (2016). Influence of salinity on transport of Nitrates and Potassium by means of the xylem sap content between roots and shoots in young tomato plants. J. Soil Sci. Plant Nutr., 16(4), 991-998. Gamalero, E. & Glick, B. R. (2011). Mechanisms used by plant growth-promoting bacteria, in: D. K. Maheshwari (Ed.), Bacteria in Agrobiology, Plant Nutr. Management, 17–46. Gardener, B. B. M. (2004). Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology, 94(11), 1252–1258. Ghafari, S., Baboli, Z., Jorfi, S., Abtahi, M., Saeedi, R., Darvishi Cheshmeh Soltani, R., Mirzaee, S. A. & Neisi, A. (2019). Surfactant-enhanced bioremediation of n-hexadecane-contaminated soil using halo-tolerant bacteria Paenibacillus glucanolyticus sp. strain T7-AHV isolated from marine environment. Chem. Biochem. Eng. Q., 33(1), 111–123. Geremia, R. A., Goldman, G. H., Jacobs, D., Ardrtes, W., Vila, S. B., Montagu, M. & Herrera-Estrella, A. (1993). Molecular characterization of the proteinase-encoding gene, PRB1, related to mycoparasitism by Trichoderma harzianum. Mol. Microbiol., 8(3), 603–613. Gkikas, F. I., Tako, A., Gkizi, D., Lagogianni, C., Markakis, E. A. & Tjamos, S. E. (2021). Paenibacillus alvei K165 and Fusarium oxysporum F2: Potential biocontrol agents against Phaeomoniella chlamydospora in grapevines. Plants, 10(2), 207. Gkizi, D., González Gil, A., Pardal, A. J., Piquerez, S. J. M., Sergaki, C., Ntoukakis, V. & Tjamos, S. E. (2021). The bacterial biocontrol agent Paenibacillus alvei K165 confers inherited resistance to Verticillium dahliae. J. Exp. Bot., 72(12), 4565–4576. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res., 169(1), 30–39. Gomathi, T., Saranya, M., Radha, E., Vijayalakshmi, K., Prasad, P. S. & Sudha, P. N. (2020). Bioremediation: A promising xenobiotics cleanup technique. In: S. Kim (Ed.), Encyclopedia of Mar. Biotechnol., 3139–3172. Govarthanan, M., Lee, G. W., Park, J. H., Kim, J. S., Lim, S. S., Seo, S. K., Cho, M., Myung, H., Kamala-Kannan, S. & Oh, B. T. (2014). Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil. Chemosphere, 109, 42–48. Govarthanan, M., Mythili, R., Selvankumar, T., Kamala-Kannan, S., Rajasekar, A. & Chang, Y. C. (2016). Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech., 6, 1-7. Govindasamy, V., Senthilkumar, M. & Upendra Kumar, A. K. (2008). Pgpr-biotechnology for management of abiotic and biotic stresses in crop plants. In: Potential Microorganisms for Sustainable Agriculture. I.K. International Publishing, 26–48. Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V. A. & Annapurna, K. (2010). Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. Springer Berlin Heidelberg, 18. Grady, E. N., MacDonald, J., Liu, L., Richman, A. & Yuan, Z. C. (2016). Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Factories. 15(1), 1–18. Ha, X., Koopmann, B. & Von Tiedemann, A. (2016). Wheat blast and fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathol., 106(3), 270–281. Han, X., Zeng, H., Bartocci, P., Fantozzi, F. & Yan, Y. (2018). Phytohormones and effects on growth and metabolites of microalgae: A Review. Fermentation, 4(2), 25. Hao, T. Y. & Chen, S. F. (2017). Colonization of wheat, maize and cucumber by Paenibacillus polymyxa WLY78. PLOS One, 12(1), e0169980. Heydari, A. & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. J. Biol. Sci., 10(4), 273–290. Hidangmayum, A., Dwivedi, P., Katiyar, D. & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol., 25(2), 313–326. Holl, F. B., Chanway, C. P., Turkington, R. & Radley, R. A. (1988). Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol. Biochem., 20(1), 19-24. Hyakumachi, M. & Kubota, M. (2003). Fungi as plant growth promoter and disease suppressor. In: Fungal Biotechnology in Agricultural, Food and Environmental Application, Marcel Dekker Inc., New York, USA, 101-110. Jiang, A., Zou, C., Xu, X., Ke, Z., Hou, J., Jiang, G., Fan, C., Gong, J. & Wei, J. (2022). Complete genome sequence of biocontrol strain Paenibacillus peoriae HJ-2 and further analysis of its biocontrol mechanism. BMC Genomics, 23(1), 161. Kamil, F. H., Saeed, E. E., El-Tarabily, K. A. & Abu Qamar, S. F. (2018). Biological control of mango dieback disease caused by Lasiodiplodia theobromae using streptomycete and nonstreptomycete actinobacteria in the United Arab Emirates. Front. Microbiol., 9, 829. Kanade, S. N., Ade, A. B. & Khilare, V. C. (2012). Malathion degradation by Azospirillum lipoferum Beijerinck. Sci. Res. Reporter, 2(1), 94-103. Khan, N., Mishra, A., Chauhan, P. S., Sharma, Y. K. & Nautiyal, C. S. (2012). Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie van Leeuwenhoek, 101, 453–459. Kilic-Ekici, O. & Yuen, G. Y. (2003). Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology®, 93(9),1103-1110. Kim, Y. H., Park, S. K., Hur, J. Y. & Kim, Y. C. (2017). Purification and characterization of a major extracellular chitinase from a biocontrol bacterium, Paenibacillus elgii HOA73. Plant Pathol. J., 33(3), 318–328. Kim, Y. C., Hur, J. Y. & Park, S. K. (2019). Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73. Eur. J. Plant Pathol., 155(1), 253–263. Kumar, P., Thakur, S., Dhingra, G. K., Singh, A., Pal, M. K., Harshvardhan, K., Dubey, R. C. & Maheshwari, D. K. (2018). Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal. Agric. Biotechnol., 15, 264–269. Kumari, M. & Thakur, I. S. (2018). Biochemical and proteomic characterization of Paenibacillus sp. ISTP10 for its role in plant growth promotion and in rhizostabilization of cadmium. Bioresour. Technol. Reports, 3, 59–66. Kuroda, J., Fukai, T. & Nomura, T. (2001). Collision-induced dissociation of ring-opened cyclic depsipeptides with a guanidino group by electrospray ionization/ion trap mass spectrometry. J. Mass Spectrom., 36(1), 30–37. Ladha, J. K., Tirol-Padre, A., Reddy, C. K., Cassman, K. G., Verma, S., Powlson, D. S., van Kessel, C., de B. Richter, D., Chakraborty, D. & Pathak, H. (2016). A 50-Year assessment for maize, rice and wheat production systems. In: Global Nitrogen Budgets in Cereals. Sci. Rep., 6(1), 19355. Lal, S. & Tabacchioni, S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol., 49(1), 2–10. Le Mire, G., Nguyen, M. L., Fassotte, B., du Jardin, P., Verheggen, F., Delaplace, P. & Jijakli Haissam, M. (2016). Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ., 20(S), 1–15. Li, Y. & Chen, S. (2019). Fusaricidin produced by Paenibacillus polymyxa WLY78 induces systemic resistance against Fusarium Wilt of cucumber. Int. J. Mol. Sci., 20(20), 5240. Liu, J., Tian, S., Meng, X. & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol., 44(3), 300–306. Loganathan, P., Myung, H., Muthusamy, G., Lee, K. J., Seralathan, K. K. & Oh, B. T. (2015). Effect of heavy metals on acdS gene expression in Herbaspirillium sp. GW103 isolated from rhizosphere soil. J. Basic Microbiol., 55(10), 1232–1238. Malusá, E. & Vassilev, N. (2014). A contribution to set a legal framework for biofertilisers. Appl. Microbiol. Biotechnol., 98(15), 6599–6607. Masso, C., Mukhongo, R. W., Thuita, M., Abaidoo, R., Ulzen, J., Kariuki, G. & Kalumuna, M. (2016). Biological inoculants for sustainable intensification of agriculture in sub-Saharan Africa smallholder farming systems, in: Climate change and multidimensional sustainability in African agriculture. Springer, Cham., 639–658. Mauricio-Gutiérrez, A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C., Sánchez-Alonso, M. P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Polish Academy of Sciences, Archives of Environmental Protection, 46(4), 59–69. Mead, D. A., Lucas, S., Copeland, A., Lapidus, A., Cheng, J. F., Bruce, D. C., Goodwin, L. A., Pitluck, S., Chertkov, O., Zhang, X., Detter, J. C., Han, C. S., Tapia, R., Land, M., Hauser, L. J., Chang, Y. J., Kyrpides, N. C., Ivanova, N. N., Ovchinnikova, G. & Brumm, P. (2012). Complete genome sequence of Paenibacillus strain Y4.12MC10, a novel paenibacillus lautus strain isolated from obsidian hot spring in Yellowstone national park. Genom. Sci., 6(3), 366–385. Mehmet Tuğrul, K. (2020). Soil Management in Sustainable Agriculture. In: Sustainable Crop Production. IntechOpen. Nguyen, X. H., Naing, K. W., Lee, Y. S., Jung, W. J., Anees, M. & Kim, K. Y. (2013). Antagonistic potential of Paenibacillus elgii HOA73 against the root-knot nematode, meloidogyne incognita. Nematology, 15(8), 991–1000. Noreen, S., Ali, B. & Hasnain, S. (2012). Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity. Ann. Microbiol., 62(1), 411–417. Novo, M., Silvar, C., Merino, F., Martínez-Cortés, T., Lu, F., Ralph, J. & Pomar, F. (2017). Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae kleb. Plant Sci., 258, 12–20. Ongena, M. & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol., 16(3), 115–125. Oulghazi, S., Sarfraz, S., Zaczek-Moczydłowska, M. A., Khayi, S., Ed-Dra, A., Lekbach, Y., Campbell, K., Moleleki, L. N., O’Hanlon, R. & Faure, D. (2021). Pectobacterium brasiliense: genomics, host range and disease management. Microorganisms, 9(1), 106. Padda, K. P., Puri, A., Zeng, Q., Chanway, C. P. & Wu, X. (2017). Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of Paenibacillus polymyxa. Botany, 95(9), 933–942. Palma-Guerrero, J., Lopez-Jimenez, J. A., Pérez-Berná, A. J., Huang, I. C., Jansson, H. B., Salinas, J., Villalain, J., Read, N. D. & Lopez-Llorca, L. V. (2010). Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol. Microbiol., 75(4), 1021–1032. Park, S. M., Lee, J. S., Jegal, S., Jeon, B. Y., Jung, M., Park, Y. S., Han, S. L., Shin, Y. S., Her, N. H., Lee, J. H., Lee, M. Y., Ryu, K. H., Yang, S. G. & Harn, C. H. (2005). Transgenic watermelon rootstock resistant to CGMMV (Cucumber Green Mottle Mosaic Virus) infection. Plant Cell Rep., 24(6), 350–356. Parnell, J. J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y., Barnhart, D. M. & DiLeo, M. (2016). From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Front. Plant Sci., 7, 1110. Passera, A., Venturini, G., Battelli, G., Casati, P., Penaca, F., Quaglino, F. & Bianco, P. A. (2017). Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiol. Res., 198, 16–26. Pathania, P., Rajta, A., Singh, P. C. & Bhatia, R. (2020). Role of plant growth-promoting bacteria in sustainable agriculture. Biocatal. Agric. Biotechnol., 30, 101842. Patowary, R. & Deka, H. (2020). Paenibacillus. In: beneficial microbes in agro-ecology. Academic press, Elsevier Inc., 339-361. Paulus, H. & Gray, E. (1964). The biosynthesis of polymyxin B by growing cultures of Bacillus polymyxa. J. Biol. Chem., 239(3), 865–871. Pawełczak, M., Dawidowska-Marynowicz, B., Oszywa, B., Koszałkowska, M., Kręcidło, Ł. & Krzyśko-Łupicka, T. (2015). Influence of bioremediation stimulators in soil on development of oat seedlings (Avena sativa) and their aminopeptidase activity. Arch. Environ. Prot., 41(1), 24–28. Qian, C. D., Liu, T. Z., Zhou, S. L., Ding, R., Zhao, W. P., Li, O. & Wu, X-Ch. (2012). Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiology, 12(1), 1-7. Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front. physiol., 8, 667. Rajkumar, M., Lee, K. J. & Freitas, H. (2008). Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. S. Afr. J. Bot., 74(2), 268–273. Rawat, M. & Rai, J. P. N. (2012). Adsorption of heavy metals by Paenibacillus validus strain MP5 isolated from industrial effluent–polluted soil. Bioremediat. J., 16(2), 66–73. Reddy, M. V. B., Angers, P., Castaigne, F. & Arul, J. (2000). Chitosan effects on blackmold rot and pathogenic factors produced by Alternaria alternata in postharvest tomatoes. J. Am. Soc. Hortic., 125(6), 742–774. Regnault-Roger, C. (2012). Trends for commercialization of biocontrol agent (Biopesticide) products. In: Plant Defence: Biological Control. Springer Netherlands, 139–160. Romeh, A. A. & Hendawi, M. Y. (2014). Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J. Agric. Sci. Technol., 16(2), 265–276. Rosenblueth, M., Ormeño-Orrillo, E., López-López, A., Rogel, M. A., Reyes-Hernández, B. J., Martínez-Romero, J. C., Reddy, P. M. & Martínez-Romero, E. (2018). Nitrogen fixation in cereals. Front. Microbiol. 9, 1794. Rybakova, D., Cernava, T., Köberl, M., Liebminger, S., Etemadi, M. & Berg, G. (2016). Endophytes-assisted biocontrol: Novel insights in ecology and the mode of action of Paenibacillus. Plant and Soil, 405(1–2), 125–140. Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S. & Tribedi, P. (2016). Microbial siderophores and their potential applications: A review. Environ. Sci. Pollut. Res. Int., 23(5), 3984–3999. Sattler, S. E. & Funnell-Harris, D. L. (2013). Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier against pathogens? Front. Plant Sci., 4, 70. Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol., 3(3), 430–439. Sharifi, R. & Ryu, C. M. (2016). Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front. Microbiol., 7, 196. Sharp, R. (2013). A Review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy, 3(4), 757–793. Shi, J., Cui, L., Ma, Y., Du, H. & Wen, K. (2018). Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos. Res., 212, 259–272. Shurigin, V., Alimov, J., Davranov, K., Gulyamova, T., & Egamberdieva, D. (2022). The diversity of bacterial endophytes from iris Pseudacorus l. and their plant beneficial traits. Curr Res Microb Sci., 3, 100133. Singh, B. K. & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev., 30(3), 428-471. Singh, N., Gupta, V. K., Kumar, A. & Sharma, B. (2017). Synergistic effects of heavy metals and pesticides in living systems. Front. Chem., 5, 70. Siroli, L., Patrignani, F., Serrazanetti, D. I., Gardini, F. & Lanciotti, R. (2015). Innovative strategies based on the use of bio-control agents to improve the safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci. Technol., 46(2), 302–310. Soni, R., Nanjani, S. & Keharia, H. (2021). Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Genomics, 113(1), 861–873. Spaepen, S. & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol., 3(4), a001438. Stamenković, S., Beškoski, V., Karabegović, I., Lazić, M. & Nikolić, N. (2018). Microbial fertilizers: A comprehensive review of current findings and future perspectives. Span. J. Agric. Res., 16(1), e09R01. Suja, F., Rahim, F., Taha, M. R., Hambali, N., Razali, M. R., Khalid, A. & Hamzah, A. (2014). Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Inter. Biodeter. Biodegr., 90, 115–122. Sukweenadhi, J., Balusamy, S. R., Kim, Y.-J., Lee, C. H., Kim, Y.-J., Koh, S. C. & Yang, D. C. (2018). A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng. Front. Plant Sci., 9, 813. Tandon, A., Anshu, F. T., Shukla, D., Tripathi, P., Srivastava, S. & Singh, P. C. (2020). Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. J. King Saud Univ. Sci., 32(1), 791–798. Timmusk, S., Grantcharova, N. & Wagner, E. G. H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol., 71(11), 7292–7300. Timmusk, S., Paalme, V., Pavlicek, T., Bergquist, J., Vangala, A., Danilas, T. & Nevo, E. (2011). Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLOS One. 6(3), e17968. Tiwari, R. K., Singh, S., Pandey, R. S. & Sharma, B. (2016). Enzymes of earthworm as indicators of pesticide pollution n in soil. Adv. Enzyme Res., 04(04), 113–124. Tiwari, S., Prasad, V. & Lata, C. (2019). Bacillus: plant growth promoting bacteria for sustainable agriculture and environment. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, 43–55. Tjamos, S. E., Flemetakis, E., Paplomatas, E. J. & Katinakis, P. (2005). Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol. Plant-Microbe Interact., 18(6), 555–561. Torres-Cruz, T. J., Hesse, C., Kuske, C. R. & Porras-Alfaro, A. (2018). Presence and distribution of heavy metal tolerant fungi in surface soils of a temperate pine forest. Appl. Soil Ecol., 131, 66–74. Tsegaye, Z., Assefa, F. & Beyene, D. (2017). Properties and application of plant growth promoting rhizobacteria. Int. J. Curr. Trends Pharmacobiol., 2(1), 30–43. Ujowundu, C. O., Kalu, F. N., Nwaoguikpe, R. N., Kalu, O. I., Ihejirika, C. E., Nwosunjoku, E. C. & Okechukwu, R. I. (2011). Biochemical and physical characterization of diesel petroleum contaminated soil in South Eastern Nigeria. Res. J. Chem. Sci., 1(8), 57–62. Varsha, R. & Sengar, R. (2020). Use of potassium bio-fertilizers technology for sustainable agriculture in dry areas. J. Pharmacogn. Phytochem., 9(6), 1-71944–71946. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability - a Review. Molecules, 21(5), 573. Wang, A., Mincke, S. & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym., 164, 268–283. Wang, X., Wang, C., Li, Q., Zhang, J., Ji, C., Sui, J., Liu, Z., Song, X. & Liu, X. (2018). Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil-borne wheat diseases. J. Appl. Microbiol., 125(6), 1868–1880. Wang, X., Xu, S., Wu, S., Feng, S., Bai, Z., Zhuang, G. & Zhuang, X. (2018b). Effect of Trichoderma Viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China. J. Environ. Sci., 66, 199–207. Wang, X., Li, Q., Sui, J., Zhang, J., Liu, Z., Du, J., Xu, R., Zhou, Y. & Liu, X. (2019). Isolation and characterization of antagonistic bacteria Paenibacillus jamilae HS-26 and their effects on plant growth. Biomed Res. Int.,2019(1), 3638926. Watanabe, K., Kodama, Y. & Harayama, S. (2001). Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods., 44(3), 253–262. Wen, Y., Wu, X., Teng, Y., Qian, C., Zhan, Z., Zhao, Y. & Li, O. (2011). Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environ. Microbiol., 13(10), 2726–2737. Weselowski, B., Nathoo, N., Eastman, A. W., MacDonald, J. & Yuan, Z. C. (2016). Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiology, 16(1), 244. Xiao, Y., Wang, X., Chen, W. & Huang, Q. (2017). Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J., 34(10), 873–880. Xu, S. J. & Kim, B. S. (2014). Biocontrol of Fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology, 42(2), 158–166. Yegorenkova, I. V., Tregubova, K. V. & Schelud’ko, A. V. (2018). Motility in liquid and semisolid media of Paenibacillus polymyxa associative rhizobacteria differing in exopolysaccharide yield and properties. Symbiosis, 74(1), 31–42. Yousuf, J., Thajudeen, J., Rahiman, M., Krishnankutty, S., Alikunj, A. P., Abdulla, M. H. A. (2017). Nitrogen fixing potential of various heterotrophic Bacillus strains from a tropical estuary and adjacent coastal regions. J. Basic Microbiol., 57(11), 922–932. Yuan, J., Raza, W., Shen, Q. & Huang, Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol., 78(16), 5942–5944. Zhang, W. H., Chen, W., He, L. Y., Wang, Q. & Sheng, X. F. (2015). Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca Americana and their impact on Mn accumulation of hybrid penisetum. Ecotox. Environ. Safe, 120, 369–376. Zhang, H., Du, H. & Xu, Y. (2021). Volatile organic compound-mediated antifungal activity of Pichia spp. and its effect on the metabolic profiles of fermentation communities. Appl. Environ. Microbiol., 87(9), e02992-20. Zhao, Y., Xie, X., Li, J., Shi, Y., Chai, A., Fan, T., Li, B. & Li, L. (2022). Comparative genomics insights into a novel biocontrol agent Paenibacillus peoriae strain ZF390 against bacterial soft rot. Biology, 11(8), 1172. Zhou, C., Guo, J., Zhu, L., Xiao, X., Xie, Y., Zhu, J., Ma, Z. & Wang, J. (2016). Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol. Biochem., 105, 162–173. Zin, N. A. & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci., 65(2), 168–178.
|
|
| Date published: 2024-10-24
Download full text