Screening and bioassay of halotolerant phosphate solubilizing bacteria using rice (Oryza sativa L.) on salinity media
Betty Natalie Fitriatin
, Diya Septiani Lukita, Debora D. M. Ambarita, Mieke Rochimi Setiawati, Tualar Simarmata
Abstract: Some beneficial microbes have the ability to tolerate salinity stress conditions to obtain superior isolates of halo tolerant phosphate solubilizing bacteria (PSB) and determine the ability of PSB isolates to increase the growth of rice seedlings. The research was carried out at the Laboratory and Greenhouse of the Department of Soil Science and Land Resources, Faculty of Agriculture, Universitas Padjadjaran. In this study, halotolerant PSB were isolated from saline soil with salinity 4 dS/m and grown in Pikovskaya medium. The results showed that a superior isolate of phosphate solubilizing bacteria had been obtained from saline soil which were capable of producing phytohormones, phosphatase enzymes and organic acids. Three superior isolates PSB 1, PSB 3, and PSB 6 produced phosphatase enzymes (3.508 µg pNP/g/h, 3.307 µg pNP/g/h, and 3.257 µg pNP/g/h), growth hormone IAA (4.611 ppm, 4.913 ppm, and 3.819 ppm), and organic acids (citric, acetic, oxalic, lactic, malic and ascorbic). These isolates could form biofilms . Inoculation of PSB isolates were able to increase root length by 45.01%, 37.54%, and 32.65%. The isolate was also able to increase plant height by 28.58%, 43.77%, and 62.69%.The provision of selected PSB isolates, could increase the growth of rice plants and have the potential to be developed as biofertlizer to increase the productivity of rice plants in saline soil.
Keywords: IAA Phytohormones; organic acid; phosphatase; rice plants; salinity
Citation: Fitriatin, B. N., Lukita, D. S., Ambarita, D. D. M., Setiawati, M. R. & Simarmata, T. (2024). Screening and bioassay of halotolerant phosphate solubilizing bacteria using rice (Oryza sativa L.) on salinity media. Bulg. J. Agric. Sci., 30(5), 777–783
References: (click to open/close) | Ahmad, F., Ahmad, I. & Khan, M. S. (2005). Indoleaceticacid production by the indigenous isolates of Azotobacter and Fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J. Biol., 29, 29-34. Amri, M. F., Husen, E., Tjahjoleksono, A. & Wahyudi, A. T. (2022). Alkaline phosphatase activity of plant growth-promoting actinomycetes and their genetic diversity based on the phoDgene. HAYATI J. Biosci., 361. 29(3), 360-369. Arifah, Darmawan Salman, Amir Yassi & Eymal Bahsar-Demmallino (2022). Climate change impacts and the rice farmers' responses at irrigated upstream and downstream in Indonesia. Heliyon. 8(12), e11923. Alori, E. T., Glick, B. R. & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiersin Microbiology, 8, 971. Asova, T. N., Jingga, A., Setiawati, M. R. & Simarmata, T. (2018). Biological Test and Characterization of Phosphate Rhizobacteral Isolate using Corn Plant Indicator. Jurnal Penelitian Saintek, 23(1), 44-51. Atekan, Nuraini, Y., Handayanto, E. & Syekhfani (2014). The Potential of Phosphate Solubilizing Bacteria Isolated from Sugarcane Wastes for Solubilizing Phosphate. Journal of Degreded and Mining Lands Management, 1(4), 175-182. Chaudhary, P., Singh, S., Chaudhary, A., Sharma, A. & Kumar, G. (2022). Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front. Plant Sci., 13, 930340. doi: 10.3389/fpls.2022.930340 Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., Burt, A. F., Mavumengwana, V., Keyster, M. & Klein, A. (2022). Biofertilizer: The Future of Food Securityand Food Safety. Microorganisms, 10, 1220. Fitriatin, B. N., Fauziah, D., Fitriani, F. N., Ningtyas, D. N., Suryatmana, P., Hindersah, R., Setiawati, M. R. & Simarmata, T. (2020). Biochemical activity and bioassay on maize seedling of selected indigenous phosphate-solubilizing bacteria isolated from the acidsoil ecosystem. Open Agriculture, 5, 300–304. Fitriatin, B., Mulyani, O., Herdiyantoro, D., Alahmadi, T. A. & Pellegrini, M. (2022). Metabolic characterization of phosphate solubilizing microorganisms and their role in improving soil phosphate solubility, yield of uplandrice (Oryza sativa L.), and phosphorus fertilizers efficiency. Front. Sustain. Food Syst., 6, 1032708. Herlina, L., Pukan, K.K., & Mustikaningtyas, D. (2017). The endophytic bacteria producing IAA (Indole Acetic Acid) in Arachis hypogaea. Cell Biology & Development, 1 (1), 31-35, Irakoze, W., Prodjinoto, H., Nijimbere, S., Bizimana, J. B., Bigirimana, J., Rufyikiri, G. & Lutts, S. (2021). NaCl-and Na2SO4-Induced Salinity Differentially Affect Clay Soil Chemical Properties and Yield Components of Two Rice Cultivars (Oryza sativa L.) in Burundi. Agronomy, 11, 571. Kabir, S., Rahman, M., Rahman, M., Rahman, M. & Ahmed, S. (2004). The Dynamics of Probliotics on Growth Performance and Immune Response in Broilers. International Journal of Poultry Science, 3(5), 361-364. Kumar, S., Diksha, Sindhu, S.S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences. 3,100094 Lidbury, I. D. E. A., Scanlan, D. J., Andrew, R. J., Murphy, A. R. J., Christie-Olezac, J. A., Maria, M., Aguilo-Ferretjans, M. M., Hitchcock, A. & Daniel, T. J. (2022). Awidely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere. PNAS, 119(5). Margesin, R. (1996). Acid and Alkaline Phosphomonoesterase Activity with the Substrate P-nitrophenyl Phosphate. Methodes of Soil Biology. Berlin; Springer-Verlag, 213-7. Martaguri, I. (2009). Utilization of Potential Soil Microorganisms and Humic Acid for Feed Leguminose Productivity in Post-Gold Mining Land PT. Various Pongkor Mines. Institut Pertanian Bogor. Mazher, A. A., El-Quesni, E. F. & Farahat, M. (2007). Responses of Ornamental Plants and Woody Trees to Salinity. World Journal of Agricultural Sciences, 3(3), 386-395. Minaxi, N., Lata, R., Yadav & Saxena, J. (2011). Characterization of Multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi-arid deserts. Applied Soil Ecology, 1-12. O'toole, G. A. (2011). Microtiterdish Biofilm formation assay. Journal of Visualized Experiments, 47, 10-11. Patten, C. L. & Glick, B. R. (2002). Role of Pseudomonas putida Indole Acid in Development of the Host Plant Root System. Appl. Environ. Microbiol., 68(8), 3795-3801. Premono, E. P., Moawad, M. & Vlek, A. M. (2007). Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian J. Crop Sci., 11,13–23. Puspafirdausi, F. A., Sofyan, E. T. & Natalie, B. (2017). Application of Biofertilizer Consortium to Population of Phosphate Solubilizing Bacteria and Dry Weight of Paddy (Oryza sativa L.) Grown in Several Levels of Salinity. Jurnal Agroekotek, 9(1), 61-67. Robika & Rahmad Lingga, R., & Afriansyah, B. A. (2022). Identification of Biofilm-Producing Bacteria fromNangka Island Marine Water in District of Bangka Tengah. Journal Pembelajaran dan Biologi Nukleus, 8(1), 179-191. Ryan, P., Delhaize, E. & Jones, D. (2001). Function and Mechanism of Organic Anion Exudation From Plant Roots. Annu. Rev. Plant Physiol. Plant. Mol. Biol., 52, 527-560. Shaharoona, B., Arshad, M., & Zahir A. Zahir, A. K. (2006). Performance of Pseudomonas spp Containing ACC-deaminase for Improving Growth and Yield of Maize (Zea mays L.) in the Presence of Nitrogenous Fertilizer. Soil Biology and Biochemistry, 38(9), 2971-2975. Whitelaw (2000). Growth Promotion of Plants Inoculated with Posphate Solubilizing Fungi. Adv. Agron., 69, 99-151. Widawati, S. & Suliasih (2006). The population of phosphate solubilizing bacteria (PSB) from Cikaniki, Botol Mountain, and Ciptarasa Area, and the ability of PSB to solubilize in soluble P in solid Pikovskaya medium. Biodiversitas, 7(2),109-113. Zhang, J., Liangmin G., Zhendong P., Linghan L., Xiaoqing C., Shuo W., Hui W., RongrongT., Chuang S. & Xudong, C. (2021). Effect of low-molecular-weight organic acidson phosphorus soil activation: A laboratory study of the soils from Wangbeng section of the Huaihe River Basin, China. Plant, Soil and Environment, 27(11), 660-667. DOI:10.17221/379/2021-PSE |
|
| Date published: 2024-10-24
Download full text